Popular Matchings in Complete Graphs

被引:0
|
作者
Ágnes Cseh
Telikepalli Kavitha
机构
[1] Institute of Economics,Centre for Economic and Regional Studies
[2] University of Potsdam,Hasso Plattner Institute
[3] Tata Institute of Fundamental Research,undefined
来源
Algorithmica | 2021年 / 83卷
关键词
Popular matching; Complexity; Stable matching;
D O I
暂无
中图分类号
学科分类号
摘要
Our input is a complete graph G on n vertices where each vertex has a strict ranking of all other vertices in G. The goal is to construct a matching in G that is popular. A matching M is popular if M does not lose a head-to-head election against any matching M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M'$$\end{document}: here each vertex casts a vote for the matching in {M,M′}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{M,M'\}$$\end{document} in which it gets a better assignment. Popular matchings need not exist in the given instance G and the popular matching problem is to decide whether one exists or not. The popular matching problem in G is easy to solve for odd n. Surprisingly, the problem becomes NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {NP}$$\end{document}-complete for even n, as we show here. This is one of the few graph theoretic problems efficiently solvable when n has one parity and NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {NP}$$\end{document}-complete when n has the other parity.
引用
下载
收藏
页码:1493 / 1523
页数:30
相关论文
共 50 条
  • [1] Popular Matchings in Complete Graphs
    Cseh, Agnes
    Kavitha, Telikepalli
    ALGORITHMICA, 2021, 83 (05) : 1493 - 1523
  • [2] Enumeration of matchings in the incidence graphs of complete and complete bipartite graphs
    Pippenger, N
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (01) : 47 - 64
  • [3] Rainbow numbers for matchings and complete graphs
    Schiermeyer, I
    DISCRETE MATHEMATICS, 2004, 286 (1-2) : 157 - 162
  • [4] On the flip graphs on perfect matchings of complete graphs and signed reversal graphs
    Cioaba, Sebastian M.
    Royle, Gordon
    Tan, Zhao Kuang
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 81 : 480 - 497
  • [5] Finding strongly popular b-matchings in bipartite graphs
    Kiraly, Tamas
    Meszaros-Karkus, Zsuzsa
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 88
  • [6] Monochromatic spanning trees and matchings in ordered complete graphs
    Barat, Janos
    Gyarfas, Andras
    Toth, Geza
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 523 - 541
  • [7] Matchings with few colors in colored complete graphs and hypergraphs
    Gyarfas, Andras
    Sarkozy, Gabor N.
    DISCRETE MATHEMATICS, 2020, 343 (05)
  • [8] Almost fair perfect matchings in complete bipartite graphs
    Othman, Abeer
    Berger, Eli
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [9] Popular matchings
    Abraham, David J.
    Irving, Robert W.
    Kavitha, Telikepalli
    Mehlhorn, Kurt
    SIAM JOURNAL ON COMPUTING, 2007, 37 (04) : 1030 - 1045
  • [10] Popular Matchings
    Abraham, David J.
    Irving, Robert W.
    Kavitha, Telikepalli
    Mehlhorn, Kurt
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 424 - 432