Popular Matchings in Complete Graphs

被引:0
|
作者
Ágnes Cseh
Telikepalli Kavitha
机构
[1] Institute of Economics,Centre for Economic and Regional Studies
[2] University of Potsdam,Hasso Plattner Institute
[3] Tata Institute of Fundamental Research,undefined
来源
Algorithmica | 2021年 / 83卷
关键词
Popular matching; Complexity; Stable matching;
D O I
暂无
中图分类号
学科分类号
摘要
Our input is a complete graph G on n vertices where each vertex has a strict ranking of all other vertices in G. The goal is to construct a matching in G that is popular. A matching M is popular if M does not lose a head-to-head election against any matching M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M'$$\end{document}: here each vertex casts a vote for the matching in {M,M′}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{M,M'\}$$\end{document} in which it gets a better assignment. Popular matchings need not exist in the given instance G and the popular matching problem is to decide whether one exists or not. The popular matching problem in G is easy to solve for odd n. Surprisingly, the problem becomes NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {NP}$$\end{document}-complete for even n, as we show here. This is one of the few graph theoretic problems efficiently solvable when n has one parity and NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {NP}$$\end{document}-complete when n has the other parity.
引用
下载
收藏
页码:1493 / 1523
页数:30
相关论文
共 50 条
  • [31] Matchings in graphs and groups
    Jarden, Adi
    Levit, Vadim E.
    Shwartz, Robert
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 216 - 224
  • [32] COUNTING MATCHINGS IN GRAPHS
    FARRELL, EJ
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1987, 324 (03): : 331 - 339
  • [33] A complete description of convex sets associated with matchings and edge-connectivity in graphs
    Henning, Michael A.
    Yeo, Anders
    JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 643 - 667
  • [34] GRAPHS WITH THE FEWEST MATCHINGS
    Keough, Lauren
    Radcliffe, Andrew J.
    COMBINATORICA, 2016, 36 (06) : 703 - 723
  • [35] Graphs with the fewest matchings
    Lauren Keough
    Andrew J. Radcliffe
    Combinatorica, 2016, 36 : 703 - 723
  • [36] MATCHINGS IN REGULAR GRAPHS
    NADDEF, D
    PULLEYBLANK, WR
    DISCRETE MATHEMATICS, 1981, 34 (03) : 283 - 291
  • [37] Supereulerian graphs and matchings
    Lai, Hong-Jian
    Yan, Huiya
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1867 - 1869
  • [38] MATCHINGS AND WALKS IN GRAPHS
    GODSIL, CD
    JOURNAL OF GRAPH THEORY, 1981, 5 (03) : 285 - 297
  • [39] COLLAPSIBLE GRAPHS AND MATCHINGS
    CHEN, ZH
    LAI, HJ
    JOURNAL OF GRAPH THEORY, 1993, 17 (05) : 597 - 605
  • [40] ON THE SIGNED MATCHINGS OF GRAPHS
    Javan, Samane
    Maimani, Hamid Reza
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 541 - 547