On the rigidity of hypersurfaces into space forms

被引:0
|
作者
Abdênago Barros
Cícero Aquino
Henrique de Lima
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Universidade Federal do Piauí,Departamento de Matemática
[3] Universidade Federal de Campina Grande,Departamento de Matemática e Estatística
来源
关键词
Space forms; Complete hypersurfaces; Totally geodesic hypersurfaces; Gauss mapping; Higher order mean curvatures; Index of minimum relative nullity; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to study the rigidity of complete hypersurfaces immersed into a Riemannian space form. In this setting, first we use a classical characterization of the Euclidean sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} due to Obata (J Math Soc Jpn 14:333–340, 1962) in order to prove that a closed orientable hypersurface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^n$$\end{document} immersed with null second-order mean curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} must be isometric to a totally geodesic sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n}$$\end{document}, provided that its Gauss mapping is contained in a closed hemisphere. Furthermore, as suitable applications of a maximum principle at the infinity for complete noncompact Riemannian manifolds due to Yau (Indiana Univ Math J 25:659–670, 1976), we establish new characterizations of totally geodesic hypersurfaces in the Euclidean and hyperbolic spaces. We also obtain a lower estimate of the index of minimum relative nullity concerning complete noncompact hypersurfaces immersed in such ambient spaces.
引用
收藏
页码:689 / 698
页数:9
相关论文
共 50 条
  • [21] On deformable hypersurfaces in space forms
    M. Dajczer
    L. Florit
    R. Tojeiro
    Annali di Matematica Pura ed Applicata, 1998, 174 : 361 - 390
  • [22] On Deformable Hypersurfaces in Space Forms
    Dajczer, M.
    Florit, L.
    Tojeiro, R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1998, 174 (01) : 361 - 390
  • [23] The rigidity for real hypersurfaces in a complex projective space
    Takagi, R
    Kim, IB
    Kim, BH
    TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (04) : 531 - 536
  • [24] RIGIDITY OF COMPLETE MINIMAL HYPERSURFACES IN A HYPERBOLIC SPACE
    Barroso Neto, Nilton M.
    Wang, Qiaoling
    Xia, Changyu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 659 - 668
  • [25] A rigidity theorem for closed hypersurfaces in a symmetric space
    Cao, Shunjuan
    Ma, Zongwei
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 7 - 10
  • [26] Rigidity of Complete Minimal Hypersurfaces in the Euclidean Space
    Zhu, Peng
    RESULTS IN MATHEMATICS, 2017, 71 (1-2) : 63 - 71
  • [27] The rigidity theorem for Landsberg hypersurfaces of a Minkowski space
    Li, Jin Tang
    ANNALES POLONICI MATHEMATICI, 2012, 104 (02) : 153 - 160
  • [28] Rigidity of Complete Minimal Hypersurfaces in the Euclidean Space
    Peng Zhu
    Results in Mathematics, 2017, 71 : 63 - 71
  • [29] RIGIDITY OF HYPERSURFACES IN COMPLEX PROJECTIVE-SPACE
    JENSEN, GR
    MUSSO, E
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1994, 27 (02): : 227 - 248
  • [30] Hypersurfaces of two space forms and conformally flat hypersurfaces
    S. Canevari
    R. Tojeiro
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1 - 20