On Deformable Hypersurfaces in Space Forms

被引:23
|
作者
Dajczer, M. [1 ]
Florit, L. [1 ]
Tojeiro, R. [2 ]
机构
[1] IMPA, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Uberlandia, Uberlandia, MG, Brazil
关键词
Large Family; Space Form; Hyperbolic Space; Unique Deformation; Euclidean Hypersurface;
D O I
10.1007/BF01759378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first extend the classical Sbrana-Cartan theory of isometrically deformable euclidean hypersurfaces to the sphere and hyperbolic space. Then we construct and characterize a large family of hypersurfaces which admit a unique deformation. This is used to show, by means of explicit examples, that different types of hypersurfaces in the Sbrana-Cartan classification can be smoothly attached. Finally, among other applications, we discuss the existence of complete deformable hypersurfaces in hyperbolic space.
引用
收藏
页码:361 / 390
页数:30
相关论文
共 50 条
  • [1] On deformable hypersurfaces in space forms
    M. Dajczer
    L. Florit
    R. Tojeiro
    Annali di Matematica Pura ed Applicata, 1998, 174 : 361 - 390
  • [2] On Deformable Minimal Hypersurfaces in Space Forms
    Andreas Savas-Halilaj
    Journal of Geometric Analysis, 2013, 23 : 1032 - 1057
  • [3] On Deformable Minimal Hypersurfaces in Space Forms
    Savas-Halilaj, Andreas
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1032 - 1057
  • [4] Polyharmonic hypersurfaces into space forms
    Stefano Montaldo
    Cezar Oniciuc
    Andrea Ratto
    Israel Journal of Mathematics, 2022, 249 : 343 - 374
  • [5] On the rigidity of hypersurfaces into space forms
    Barros, Abdenago
    Aquino, Cicero
    de Lima, Henrique
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 689 - 698
  • [6] POLYHARMONIC HYPERSURFACES INTO SPACE FORMS
    Montaldo, Stefano
    Oniciuc, Cezar
    Ratto, Andrea
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (01) : 343 - 374
  • [7] On Triharmonic Hypersurfaces in Space Forms
    Yu Fu
    Dan Yang
    The Journal of Geometric Analysis, 2023, 33
  • [8] On Triharmonic Hypersurfaces in Space Forms
    Fu, Yu
    Yang, Dan
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
  • [9] Hopf hypersurfaces in space forms
    J. K. Martins
    Bulletin of the Brazilian Mathematical Society, 2004, 35 : 453 - 472
  • [10] On the stability of hypersurfaces in space forms
    Velasquez, M. A.
    de Sousa, A. F.
    de Lima, H. F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 134 - 146