On Deformable Hypersurfaces in Space Forms

被引:23
|
作者
Dajczer, M. [1 ]
Florit, L. [1 ]
Tojeiro, R. [2 ]
机构
[1] IMPA, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Uberlandia, Uberlandia, MG, Brazil
关键词
Large Family; Space Form; Hyperbolic Space; Unique Deformation; Euclidean Hypersurface;
D O I
10.1007/BF01759378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first extend the classical Sbrana-Cartan theory of isometrically deformable euclidean hypersurfaces to the sphere and hyperbolic space. Then we construct and characterize a large family of hypersurfaces which admit a unique deformation. This is used to show, by means of explicit examples, that different types of hypersurfaces in the Sbrana-Cartan classification can be smoothly attached. Finally, among other applications, we discuss the existence of complete deformable hypersurfaces in hyperbolic space.
引用
收藏
页码:361 / 390
页数:30
相关论文
共 50 条
  • [21] Isoparametric hypersurfaces in Finsler space forms
    He, Qun
    Chen, Yali
    Yin, Songting
    Ren, Tingting
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1463 - 1478
  • [22] Curvatures of complete hypersurfaces in space forms
    Cheng, QM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 55 - 68
  • [23] Isoparametric hypersurfaces in Finsler space forms
    Qun He
    Yali Chen
    Songting Yin
    Tingting Ren
    Science China Mathematics, 2021, 64 : 1463 - 1478
  • [24] Isoparametric hypersurfaces in Finsler space forms
    Qun He
    Yali Chen
    Songting Yin
    Tingting Ren
    ScienceChina(Mathematics), 2021, 64 (07) : 1463 - 1478
  • [25] Ribaucour transformations for hypersurfaces in space forms
    Tenenblat, Keti
    Wang, Qiaoling
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (02) : 157 - 185
  • [26] Hypersurfaces in simply connected space forms
    Santhanam, G.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (04): : 569 - 572
  • [27] Ribaucour Transformations for Hypersurfaces in Space Forms
    Keti Tenenblat
    Qiaoling Wang
    Annals of Global Analysis and Geometry, 2006, 29
  • [28] Remarks on biharmonic hypersurfaces in space forms
    Costa-Filho, Wagner Oliveira
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79
  • [29] THE EULER CHARACTERISTIC OF HYPERSURFACES IN SPACE FORMS AND APPLICATIONS TO ISOPARAMETRIC HYPERSURFACES
    Albuquerque, Rui
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 312 (02) : 259 - 278
  • [30] Finding Space-Time Boundaries with Deformable Hypersurfaces
    Jensen, Patrick M.
    Baerentzen, J. Andreas
    Dahl, Anders B.
    Dahl, Vedrana A.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (03) : 380 - 392