POLYHARMONIC HYPERSURFACES INTO SPACE FORMS

被引:14
|
作者
Montaldo, Stefano [1 ]
Oniciuc, Cezar [2 ]
Ratto, Andrea [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Alexandru Iioan Cuza Univ Iasi, Fac Math, Bd Carol I 11, Iasi 700506, Romania
关键词
ISOPARAMETRIC HYPERSURFACES; BIHARMONIC SUBMANIFOLDS; PRINCIPAL CURVATURES; RIEMANNIAN MANIFOLD; HARMONIC MAPS; IMMERSIONS;
D O I
10.1007/s11856-022-2315-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we shall consider polyharmonic hypersurfaces of order r (briefly, r-harmonic hypersurfaces), where r >= 3 is an integer, into a space form Nm+1(c) of curvature c. For this class of hypersurfaces we shall prove that, We c <= 0, then any r-harmonic hypersurface must be minimal provided that the mean curvature function and the squared norm of the shape operator are constant. When the ambient space is Sm+1, we shall obtain the geometric condition which characterizes the r-harmonic hypersurfaces with constant mean curvature and constant squared norm of the shape operator, and we shall establish the hounds for these two constants. in particular, we shall prove the existence of several new examples of proper r-harmonic isoparametric hypersurfaces in Sm+1 for suitable values of m and r. Finally, we shall show that all these r-harmonic hypersurfaces are also ES-r-harmonic, i.e., critical points of the Eells-Sampson r-energy functional.
引用
收藏
页码:343 / 374
页数:32
相关论文
共 50 条
  • [1] Polyharmonic hypersurfaces into space forms
    Stefano Montaldo
    Cezar Oniciuc
    Andrea Ratto
    Israel Journal of Mathematics, 2022, 249 : 343 - 374
  • [2] Polyharmonic hypersurfaces into complex space forms
    Balado-Alves, Jose Miguel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2463 - 2480
  • [3] Polyharmonic hypersurfaces into pseudo-Riemannian space forms
    Branding, V
    Montaldo, S.
    Oniciuc, C.
    Ratto, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (02) : 877 - 899
  • [4] Polyharmonic hypersurfaces into pseudo-Riemannian space forms
    V. Branding
    S. Montaldo
    C. Oniciuc
    A. Ratto
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 877 - 899
  • [5] On polyharmonic helices in space forms
    Volker Branding
    Archiv der Mathematik, 2023, 120 : 213 - 225
  • [6] On polyharmonic helices in space forms
    Branding, Volker
    ARCHIV DER MATHEMATIK, 2023, 120 (2) : 213 - 225
  • [7] On the rigidity of hypersurfaces into space forms
    Barros, Abdenago
    Aquino, Cicero
    de Lima, Henrique
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 689 - 698
  • [8] On Triharmonic Hypersurfaces in Space Forms
    Yu Fu
    Dan Yang
    The Journal of Geometric Analysis, 2023, 33
  • [9] On Triharmonic Hypersurfaces in Space Forms
    Fu, Yu
    Yang, Dan
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
  • [10] Hopf hypersurfaces in space forms
    J. K. Martins
    Bulletin of the Brazilian Mathematical Society, 2004, 35 : 453 - 472