On the rigidity of hypersurfaces into space forms

被引:0
|
作者
Abdênago Barros
Cícero Aquino
Henrique de Lima
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Universidade Federal do Piauí,Departamento de Matemática
[3] Universidade Federal de Campina Grande,Departamento de Matemática e Estatística
来源
关键词
Space forms; Complete hypersurfaces; Totally geodesic hypersurfaces; Gauss mapping; Higher order mean curvatures; Index of minimum relative nullity; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to study the rigidity of complete hypersurfaces immersed into a Riemannian space form. In this setting, first we use a classical characterization of the Euclidean sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} due to Obata (J Math Soc Jpn 14:333–340, 1962) in order to prove that a closed orientable hypersurface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^n$$\end{document} immersed with null second-order mean curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} must be isometric to a totally geodesic sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n}$$\end{document}, provided that its Gauss mapping is contained in a closed hemisphere. Furthermore, as suitable applications of a maximum principle at the infinity for complete noncompact Riemannian manifolds due to Yau (Indiana Univ Math J 25:659–670, 1976), we establish new characterizations of totally geodesic hypersurfaces in the Euclidean and hyperbolic spaces. We also obtain a lower estimate of the index of minimum relative nullity concerning complete noncompact hypersurfaces immersed in such ambient spaces.
引用
收藏
页码:689 / 698
页数:9
相关论文
共 50 条
  • [41] Isoparametric hypersurfaces in Finsler space forms
    Qun He
    Yali Chen
    Songting Yin
    Tingting Ren
    Science China Mathematics, 2021, 64 : 1463 - 1478
  • [42] Isoparametric hypersurfaces in Finsler space forms
    Qun He
    Yali Chen
    Songting Yin
    Tingting Ren
    ScienceChina(Mathematics), 2021, 64 (07) : 1463 - 1478
  • [43] On Deformable Minimal Hypersurfaces in Space Forms
    Andreas Savas-Halilaj
    Journal of Geometric Analysis, 2013, 23 : 1032 - 1057
  • [44] Ribaucour transformations for hypersurfaces in space forms
    Tenenblat, Keti
    Wang, Qiaoling
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (02) : 157 - 185
  • [45] Hypersurfaces in simply connected space forms
    Santhanam, G.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (04): : 569 - 572
  • [46] Ribaucour Transformations for Hypersurfaces in Space Forms
    Keti Tenenblat
    Qiaoling Wang
    Annals of Global Analysis and Geometry, 2006, 29
  • [47] Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space
    Wang, Qiaoling
    Xia, Changyu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) : 435 - 445
  • [48] Remarks on biharmonic hypersurfaces in space forms
    Costa-Filho, Wagner Oliveira
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79
  • [49] A RIGIDITY FOR REAL HYPERSURFACES IN A COMPLEX PROJECTIVE-SPACE
    SUH, YJ
    TAKAGI, R
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (04) : 501 - 507
  • [50] Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space
    Qiaoling Wang
    Changyu Xia
    Czechoslovak Mathematical Journal, 2007, 57 : 435 - 445