On the rigidity of hypersurfaces into space forms

被引:0
|
作者
Abdênago Barros
Cícero Aquino
Henrique de Lima
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Universidade Federal do Piauí,Departamento de Matemática
[3] Universidade Federal de Campina Grande,Departamento de Matemática e Estatística
来源
关键词
Space forms; Complete hypersurfaces; Totally geodesic hypersurfaces; Gauss mapping; Higher order mean curvatures; Index of minimum relative nullity; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to study the rigidity of complete hypersurfaces immersed into a Riemannian space form. In this setting, first we use a classical characterization of the Euclidean sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} due to Obata (J Math Soc Jpn 14:333–340, 1962) in order to prove that a closed orientable hypersurface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^n$$\end{document} immersed with null second-order mean curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} must be isometric to a totally geodesic sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n}$$\end{document}, provided that its Gauss mapping is contained in a closed hemisphere. Furthermore, as suitable applications of a maximum principle at the infinity for complete noncompact Riemannian manifolds due to Yau (Indiana Univ Math J 25:659–670, 1976), we establish new characterizations of totally geodesic hypersurfaces in the Euclidean and hyperbolic spaces. We also obtain a lower estimate of the index of minimum relative nullity concerning complete noncompact hypersurfaces immersed in such ambient spaces.
引用
收藏
页码:689 / 698
页数:9
相关论文
共 50 条
  • [31] Hypersurfaces of two space forms and conformally flat hypersurfaces
    Canevari, S.
    Tojeiro, R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 1 - 20
  • [32] Biharmonic and biconservative hypersurfaces in space forms
    Fetcu, Dorel
    Oniciuc, Cezar
    DIFFERENTIAL GEOMETRY AND GLOBAL ANALYSIS: IN HONOR OF TADASHI NAGANO, 2022, 777 : 65 - 90
  • [33] Complete foliations of space forms by hypersurfaces
    A. Caminha
    P. Souza
    F. Camargo
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 339 - 353
  • [34] On Deformable Minimal Hypersurfaces in Space Forms
    Savas-Halilaj, Andreas
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1032 - 1057
  • [35] Biharmonic hypersurfaces in Sasakian space forms
    Fetcu, D.
    Oniciuc, C.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (06) : 713 - 722
  • [36] Complete foliations of space forms by hypersurfaces
    Caminha, A.
    Souza, P.
    Camargo, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03): : 339 - 353
  • [37] Polyharmonic hypersurfaces into complex space forms
    Balado-Alves, Jose Miguel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2463 - 2480
  • [38] Hypersurfaces in simply connected space forms
    G. Santhanam
    Proceedings Mathematical Sciences, 2008, 118 : 569 - 572
  • [39] Isoparametric hypersurfaces in Finsler space forms
    He, Qun
    Chen, Yali
    Yin, Songting
    Ren, Tingting
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1463 - 1478
  • [40] Curvatures of complete hypersurfaces in space forms
    Cheng, QM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 55 - 68