Pfister forms in the algebraic and geometric theory of quadratic forms

被引:0
|
作者
Anne Quéguiner-Mathieu
机构
[1] Université Sorbonne Paris Nord,Institut Galilée LAGA
来源
Archiv der Mathematik | 2023年 / 121卷
关键词
Quadratic forms; Pfister forms; Projective homogeneous varieties; Chow motives; 11E81; 14C15; 20G15;
D O I
暂无
中图分类号
学科分类号
摘要
Nearly 60 years ago, Pfister defined what are now called Pfister forms in quadratic form theory. In addition to their remarkable intrinsic properties, Pfister forms are related to symbols in Galois cohomology and K-theory modulo 2, and are at the heart of the Milnor conjecture. In this paper, we intend to show their importance by means of three explicit examples. They also illustrate the evolution of quadratic form theory from its algebraic aspects to geometry of quadrics—more generally of varieties of isotropic subspaces of a given dimension—and their Grothendieck–Chow motives.
引用
收藏
页码:523 / 536
页数:13
相关论文
共 50 条
  • [1] Pfister forms in the algebraic and geometric theory of quadratic forms
    Queguiner-Mathieu, Anne
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 523 - 536
  • [2] Embeddability of quadratic forms in Pfister forms
    Hoffmann, DW
    Izhboldin, OT
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02): : 219 - 237
  • [3] Linkage of quadratic Pfister forms
    Chapman, Adam
    Gilat, Shira
    Vishne, Uzi
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5212 - 5226
  • [4] On the Pfister Number of Quadratic Forms
    Parimala, R.
    Suresh, V.
    Tignol, J. -P.
    [J]. QUADRATIC FORMS - ALGEBRA, ARITHMETIC, AND GEOMETRY, 2009, 493 : 327 - +
  • [5] Triple linkage of quadratic Pfister forms
    Adam Chapman
    Andrew Dolphin
    David B. Leep
    [J]. manuscripta mathematica, 2018, 157 : 435 - 443
  • [6] Types of linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    [J]. JOURNAL OF NUMBER THEORY, 2019, 199 : 352 - 362
  • [7] Triple linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    Leep, David B.
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 157 (3-4) : 435 - 443
  • [8] ALGEBRAIC K-THEORY AND QUADRATIC FORMS
    MILNOR, J
    [J]. INVENTIONES MATHEMATICAE, 1970, 9 (04) : 318 - &
  • [9] ON THE 3-PFISTER NUMBER OF QUADRATIC FORMS
    Raczek, Melanie
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) : 342 - 360
  • [10] Quadratic forms and Pfister neighbors in characteristic 2
    Hoffmann, DW
    Laghribi, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) : 4019 - 4053