Triple linkage of quadratic Pfister forms

被引:4
|
作者
Chapman, Adam [1 ]
Dolphin, Andrew [2 ]
Leep, David B. [3 ]
机构
[1] Tel Hai Acad Coll, Dept Comp Sci, IL-12208 Upper Galilee, Israel
[2] Univ Ghent, Dept Math, Ghent, Belgium
[3] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
QUATERNION ALGEBRAS; U-INVARIANT;
D O I
10.1007/s00229-017-0996-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a field F of characteristic 2, we prove that if every three quadratic nfold Pfister forms have a common quadratic (n - 1)- fold Pfister factor then I n+ 1 q F = 0. As a result, we obtain that if every three quaternion algebras over F share a common maximal subfield then u(F) is either 0, 2 or 4. We also prove that if F is a nonreal field with char(F) = 2 and u(F) = 4, then every three quaternion algebras share a common maximal subfield.
引用
收藏
页码:435 / 443
页数:9
相关论文
共 50 条
  • [1] Triple linkage of quadratic Pfister forms
    Adam Chapman
    Andrew Dolphin
    David B. Leep
    [J]. manuscripta mathematica, 2018, 157 : 435 - 443
  • [2] Linkage of quadratic Pfister forms
    Chapman, Adam
    Gilat, Shira
    Vishne, Uzi
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5212 - 5226
  • [3] Types of linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    [J]. JOURNAL OF NUMBER THEORY, 2019, 199 : 352 - 362
  • [4] Embeddability of quadratic forms in Pfister forms
    Hoffmann, DW
    Izhboldin, OT
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02): : 219 - 237
  • [5] On the Pfister Number of Quadratic Forms
    Parimala, R.
    Suresh, V.
    Tignol, J. -P.
    [J]. QUADRATIC FORMS - ALGEBRA, ARITHMETIC, AND GEOMETRY, 2009, 493 : 327 - +
  • [6] Pfister forms in the algebraic and geometric theory of quadratic forms
    Queguiner-Mathieu, Anne
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 523 - 536
  • [7] Pfister forms in the algebraic and geometric theory of quadratic forms
    Anne Quéguiner-Mathieu
    [J]. Archiv der Mathematik, 2023, 121 : 523 - 536
  • [8] ON THE 3-PFISTER NUMBER OF QUADRATIC FORMS
    Raczek, Melanie
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) : 342 - 360
  • [9] Quadratic forms and Pfister neighbors in characteristic 2
    Hoffmann, DW
    Laghribi, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) : 4019 - 4053
  • [10] COMMON SLOTS OF BILINEAR AND QUADRATIC PFISTER FORMS
    Chapman, Adam
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 38 - 47