ON THE 3-PFISTER NUMBER OF QUADRATIC FORMS

被引:1
|
作者
Raczek, Melanie [1 ]
机构
[1] Catholic Univ Louvain, ICTEAM Inst, FNRS, B-1348 Louvain, Belgium
关键词
Algebraic theory of quadratic forms; Witt groups and rings; PRODUCTS;
D O I
10.1080/00927872.2011.630709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a field F of characteristic different from 2, containing a square root of -1, endowed with an F-x2-compatible valuation v such that the residue field has at most two square classes, we use a combinatorial analogue of the Witt ring of F to prove that an anisotropic quadratic form over F with even dimension d, trivial discriminant, and Hasse-Witt invariant can be written in the Witt ring as the sum of at most (d(2))/8 3-fold Pfister forms.
引用
收藏
页码:342 / 360
页数:19
相关论文
共 50 条
  • [1] On the Pfister Number of Quadratic Forms
    Parimala, R.
    Suresh, V.
    Tignol, J. -P.
    [J]. QUADRATIC FORMS - ALGEBRA, ARITHMETIC, AND GEOMETRY, 2009, 493 : 327 - +
  • [2] Embeddability of quadratic forms in Pfister forms
    Hoffmann, DW
    Izhboldin, OT
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02): : 219 - 237
  • [3] Linkage of quadratic Pfister forms
    Chapman, Adam
    Gilat, Shira
    Vishne, Uzi
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5212 - 5226
  • [4] Triple linkage of quadratic Pfister forms
    Adam Chapman
    Andrew Dolphin
    David B. Leep
    [J]. manuscripta mathematica, 2018, 157 : 435 - 443
  • [5] Types of linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    [J]. JOURNAL OF NUMBER THEORY, 2019, 199 : 352 - 362
  • [6] Triple linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    Leep, David B.
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 157 (3-4) : 435 - 443
  • [7] Pfister forms in the algebraic and geometric theory of quadratic forms
    Queguiner-Mathieu, Anne
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 523 - 536
  • [8] Pfister forms in the algebraic and geometric theory of quadratic forms
    Anne Quéguiner-Mathieu
    [J]. Archiv der Mathematik, 2023, 121 : 523 - 536
  • [9] Quadratic forms and Pfister neighbors in characteristic 2
    Hoffmann, DW
    Laghribi, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) : 4019 - 4053
  • [10] COMMON SLOTS OF BILINEAR AND QUADRATIC PFISTER FORMS
    Chapman, Adam
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 38 - 47