Types of linkage of quadratic Pfister forms

被引:2
|
作者
Chapman, Adam [1 ]
Dolphin, Andrew [2 ]
机构
[1] Tel Hai Acad Coll, Dept Comp Sci, IL-12208 Upper Galilee, Israel
[2] Univ Antwerp, Dept Wiskunde Informat, Antwerp, Belgium
关键词
Kato-Milne cohomology; Fields of positive characteristic; Quadratic forms; Pfister forms; Quaternion algebras; Linkage; ALGEBRAS;
D O I
10.1016/j.jnt.2018.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a field F of positive characteristic p, theta is an element of H-p(n-1)(F) and beta,gamma is an element of Fx, we prove that if the symbols theta <^> d beta/beta and theta <^> d gamma/gamma in H-p(n)(F) share the same factors in H-p(1) (F) then the symbol theta <^> d beta/beta <^>d gamma/gamma in H-p(n+1)(F) is trivial. We conclude that when p = 2, every two totally separably (n - 1)-linked n-fold quadratic Pfister forms are inseparably (n - 1)-linked. We also describe how to construct non-isomorphic n-fold Pfister forms which are totally separably (or inseparably) (n - 1)-linked, i.e. share all common (n 1)-fold quadratic (or bilinear) Pfister factors. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:352 / 362
页数:11
相关论文
共 50 条
  • [1] Linkage of quadratic Pfister forms
    Chapman, Adam
    Gilat, Shira
    Vishne, Uzi
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5212 - 5226
  • [2] Triple linkage of quadratic Pfister forms
    Adam Chapman
    Andrew Dolphin
    David B. Leep
    [J]. manuscripta mathematica, 2018, 157 : 435 - 443
  • [3] Triple linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    Leep, David B.
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 157 (3-4) : 435 - 443
  • [4] Embeddability of quadratic forms in Pfister forms
    Hoffmann, DW
    Izhboldin, OT
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02): : 219 - 237
  • [5] On the Pfister Number of Quadratic Forms
    Parimala, R.
    Suresh, V.
    Tignol, J. -P.
    [J]. QUADRATIC FORMS - ALGEBRA, ARITHMETIC, AND GEOMETRY, 2009, 493 : 327 - +
  • [6] Pfister forms in the algebraic and geometric theory of quadratic forms
    Queguiner-Mathieu, Anne
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 523 - 536
  • [7] Pfister forms in the algebraic and geometric theory of quadratic forms
    Anne Quéguiner-Mathieu
    [J]. Archiv der Mathematik, 2023, 121 : 523 - 536
  • [8] ON THE 3-PFISTER NUMBER OF QUADRATIC FORMS
    Raczek, Melanie
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) : 342 - 360
  • [9] Quadratic forms and Pfister neighbors in characteristic 2
    Hoffmann, DW
    Laghribi, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) : 4019 - 4053
  • [10] COMMON SLOTS OF BILINEAR AND QUADRATIC PFISTER FORMS
    Chapman, Adam
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 38 - 47