On the Pfister Number of Quadratic Forms

被引:0
|
作者
Parimala, R. [1 ]
Suresh, V. [2 ]
Tignol, J. -P. [3 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr, Atlanta, GA 30322 USA
[2] Univ Hyderabad, Dept Math & Stat, Hyderabad 500046, Andhra Pradesh, India
[3] Catholic Univ Louvain, Dept Math, B-1348 Louvain La Neuve, Belgium
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generic quadratic form of even dimension n with trivial discriminant over an arbitrary field of characteristic different from 2 containing a square root of -1 can be written in the Witt ring as a sum of 2-fold Pfister forms using n - 2 terms and not less. The number of 2-fold Pfister forms needed to express a quadratic form of dimension 6 with trivial discriminant is determined in various cases.
引用
收藏
页码:327 / +
页数:2
相关论文
共 50 条
  • [1] ON THE 3-PFISTER NUMBER OF QUADRATIC FORMS
    Raczek, Melanie
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) : 342 - 360
  • [2] Embeddability of quadratic forms in Pfister forms
    Hoffmann, DW
    Izhboldin, OT
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02): : 219 - 237
  • [3] Linkage of quadratic Pfister forms
    Chapman, Adam
    Gilat, Shira
    Vishne, Uzi
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5212 - 5226
  • [4] Triple linkage of quadratic Pfister forms
    Adam Chapman
    Andrew Dolphin
    David B. Leep
    [J]. manuscripta mathematica, 2018, 157 : 435 - 443
  • [5] Types of linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    [J]. JOURNAL OF NUMBER THEORY, 2019, 199 : 352 - 362
  • [6] Triple linkage of quadratic Pfister forms
    Chapman, Adam
    Dolphin, Andrew
    Leep, David B.
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 157 (3-4) : 435 - 443
  • [7] Pfister forms in the algebraic and geometric theory of quadratic forms
    Queguiner-Mathieu, Anne
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 523 - 536
  • [8] Pfister forms in the algebraic and geometric theory of quadratic forms
    Anne Quéguiner-Mathieu
    [J]. Archiv der Mathematik, 2023, 121 : 523 - 536
  • [9] Quadratic forms and Pfister neighbors in characteristic 2
    Hoffmann, DW
    Laghribi, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) : 4019 - 4053
  • [10] COMMON SLOTS OF BILINEAR AND QUADRATIC PFISTER FORMS
    Chapman, Adam
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 38 - 47