Moduli dimensions of lattice polygons

被引:0
|
作者
Marino Echavarria
Max Everett
Shinyu Huang
Liza Jacoby
Ralph Morrison
Ayush K. Tewari
Raluca Vlad
Ben Weber
机构
[1] The City College of New York,
[2] Williams College,undefined
[3] Technische Universität Berlin,undefined
[4] Harvard University,undefined
来源
关键词
Tropical curves; lattice polygons; moduli spaces; 14T05; 52B20; 14H10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a lattice polygon P with g interior lattice points, we can associate to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} two moduli spaces: the moduli space of algebraic curves that are non-degenerate with respect to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} and the moduli space of tropical curves of genus g with Newton polygon P. We completely classify the possible dimensions such a moduli space can have in the tropical case. For non-hyperelliptic polygons, the dimension must be between g and 2g+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+1$$\end{document} and can take on any integer value in this range, with exceptions only in the cases of genus 3, 4, and 7. We provide a similar result for hyperelliptic polygons, for which the range of dimensions is from g to 2g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g-1$$\end{document}. In the case of non-hyperelliptic polygons, our results also hold for the moduli space of algebraic curves that are non-degenerate with respect to P.
引用
收藏
页码:559 / 589
页数:30
相关论文
共 50 条
  • [41] Trajectories of square lattice staircase polygons
    van Rensburg, E. J. Janse
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [42] Entanglement complexity of semiflexible lattice polygons
    Orlandini, E
    Tesi, MC
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (47): : L795 - L800
  • [43] Punctured polygons and polyominoes on the square lattice
    Guttmann, AJ
    Jensen, I
    Wong, LH
    Enting, IG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (09): : 1735 - 1764
  • [44] CONVEX LATTICE POLYGONS OF MINIMUM AREA
    SIMPSON, RJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 42 (03) : 353 - 367
  • [45] STAIRCASE POLYGONS AND RECURRENT LATTICE WALKS
    GLASSER, ML
    MONTALDI, E
    PHYSICAL REVIEW E, 1993, 48 (04) : R2339 - R2342
  • [46] An extremal result on convex lattice polygons
    Alarcon, E
    DISCRETE MATHEMATICS, 1998, 190 (1-3) : 227 - 234
  • [47] Statistics of lattice animals (polyominoes) and polygons
    Jensen, I
    Guttmann, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (29): : L257 - L263
  • [48] Lattice polygons and Green's theorem
    Schenck, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3509 - 3512
  • [49] Minimal Polygons with Fixed Lattice Width
    Cools, Filip
    Lemmens, Alexander
    ANNALS OF COMBINATORICS, 2019, 23 (02) : 285 - 293
  • [50] Asymptotic behavior of inflated lattice polygons
    Mitra, Mithun K.
    Menon, Gautam I.
    Rajesh, R.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (03) : 393 - 404