Statistics of lattice animals (polyominoes) and polygons

被引:56
|
作者
Jensen, I [1 ]
Guttmann, AJ [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
来源
关键词
D O I
10.1088/0305-4470/33/29/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have developed an improved algorithm that allows us to enumerate the number of site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields an improved estimate, tau = 4.062 570(8), for the growth constant of lattice animals and confirms, to a very high degree of certainty, that the generating function has a logarithmic divergence. We prove the bound tau > 3.903 18. We also calculate the radius of gyration of both lattice animals and polygons enumerated by area. The analysis of the radius of gyration series yields the estimate upsilon = 0.641 15(5), for both animals and polygons enumerated by area. The mean perimeter of polygons of area n is also calculated. A number of new amplitude estimates are given.
引用
收藏
页码:L257 / L263
页数:7
相关论文
共 50 条
  • [1] Some problems in the counting of lattice animals, polyominoes, polygons and walks
    Rechnitzer, AD
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) : 349 - 350
  • [2] Punctured polygons and polyominoes on the square lattice
    Guttmann, AJ
    Jensen, I
    Wong, LH
    Enting, IG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (09): : 1735 - 1764
  • [3] Multifold Tiles of Polyominoes and Convex Lattice Polygons
    Chida, Kota
    Demaine, Erik D.
    Demaine, Martin L.
    Eppstein, David
    Hesterberg, Adam
    Horiyama, Takashi
    Iacono, John
    Ito, Hiro
    Langerman, Stefan
    Uehara, Ryuhei
    Uno, Yushi
    [J]. THAI JOURNAL OF MATHEMATICS, 2023, 21 (04): : 957 - 978
  • [4] Knotting statistics for polygons in lattice tubes
    Beaton, N. R.
    Eng, J. W.
    Soteros, C. E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (14)
  • [5] Statistics of lattice animals
    Hsu, HP
    Nadler, W
    Grassberger, P
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2005, 169 (1-3) : 114 - 116
  • [6] STATISTICS OF LATTICE ANIMALS
    MADRAS, N
    SOTEROS, CE
    WHITTINGTON, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (24): : 4617 - 4635
  • [7] STATISTICS OF COLLAPSING LATTICE ANIMALS
    FLESIA, S
    GAUNT, DS
    SOTEROS, CE
    WHITTINGTON, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (17): : 5831 - 5846
  • [8] STATISTICS OF SPIRAL LATTICE SITE ANIMALS WITH LOOPS
    SANTRA, SB
    BOSE, I
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (22): : 5043 - 5049
  • [9] STATISTICS OF LATTICE ANIMALS AND DILUTE BRANCHED POLYMERS
    LUBENSKY, TC
    ISAACSON, J
    [J]. PHYSICAL REVIEW A, 1979, 20 (05): : 2130 - 2146
  • [10] A RIGOROUS BOUND ON THE CRITICAL EXPONENT FOR THE NUMBER OF LATTICE TREES, ANIMALS, AND POLYGONS
    MADRAS, N
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (3-4) : 681 - 699