Statistics of lattice animals (polyominoes) and polygons

被引:56
|
作者
Jensen, I [1 ]
Guttmann, AJ [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
来源
关键词
D O I
10.1088/0305-4470/33/29/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have developed an improved algorithm that allows us to enumerate the number of site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields an improved estimate, tau = 4.062 570(8), for the growth constant of lattice animals and confirms, to a very high degree of certainty, that the generating function has a logarithmic divergence. We prove the bound tau > 3.903 18. We also calculate the radius of gyration of both lattice animals and polygons enumerated by area. The analysis of the radius of gyration series yields the estimate upsilon = 0.641 15(5), for both animals and polygons enumerated by area. The mean perimeter of polygons of area n is also calculated. A number of new amplitude estimates are given.
引用
收藏
页码:L257 / L263
页数:7
相关论文
共 50 条
  • [21] Lattice polygons with two interior lattice points
    Wei, X.
    Ding, R.
    [J]. MATHEMATICAL NOTES, 2012, 91 (5-6) : 868 - 877
  • [22] Lattice polygons with two interior lattice points
    X. Wei
    R. Ding
    [J]. Mathematical Notes, 2012, 91 : 868 - 877
  • [23] Foldable Triangulations of Lattice Polygons
    Joswig, Michael
    Ziegler, Guenter M.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (08): : 706 - 710
  • [24] ON THE AREA OF SQUARE LATTICE POLYGONS
    ENTING, IG
    GUTTMANN, AJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (3-4) : 475 - 484
  • [25] An extremal property of lattice polygons
    Bliznyakov, Nikolai
    Kondratyev, Stanislav
    [J]. PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 205 - 248
  • [26] Lattice polygons and the number 12
    Poonen, B
    Rodriguez-Villegas, F
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03): : 238 - 250
  • [27] Tiling Polygons with Lattice Triangles
    Steve Butler
    Fan Chung
    Ron Graham
    Miklós Laczkovich
    [J]. Discrete & Computational Geometry, 2010, 44 : 896 - 903
  • [28] THE KNOT PROBABILITY IN LATTICE POLYGONS
    VANRENSBURG, EJJ
    WHITTINGTON, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3573 - 3590
  • [29] Newton polygons as lattice points
    Chai, CL
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) : 967 - 990
  • [30] RANDOM LINKING OF LATTICE POLYGONS
    ORLANDINI, E
    VANRENSBURG, EJ
    TESI, MC
    WHITTINGTON, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 335 - 345