STAIRCASE POLYGONS AND RECURRENT LATTICE WALKS

被引:11
|
作者
GLASSER, ML
MONTALDI, E
机构
[1] CLARKSON UNIV, CLARKSON INST STAT PHYS, POSTDAM, NY 13699 USA
[2] UNIV MILAN, DIPARTIMENTO FIS, I-20133 MILAN, ITALY
关键词
D O I
10.1103/PhysRevE.48.R2339
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we derive a direct relationship between the staircase-polygon-generating function Z(d) Of Guttmann and Prellberg [Phys. Rev. E 47, R2233 (1993)] and the generating function for recurrent lattice walks P(d) for the simple (hyper-) cubic lattice in all dimensions d. A recursion formula is obtained for the Z(d) with respect to dimension, which leads to a simplified derivation of Guttmann and Prellberg's result for d = 3, avoiding the use of the Heun function, and a derivation of their formula for d = 4 from an integral representation is given in the Appendix.
引用
收藏
页码:R2339 / R2342
页数:4
相关论文
共 50 条