We study several classes of indecomposable representations of quivers on infinite-dimensional Hilbert spaces and their relation. Many examples are constructed using strongly irreducible operators. Some problems in operator theory are rephrased in terms of representations of quivers. We shall show two kinds of constructions of quite non-trivial indecomposable Hilbert representations (H, f) of the Kronecker quiver such that End(H,f)=CI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${End(H,f) = \mathbb{C} I}$$\end{document} which is called transitive. One is a perturbation of a weighted shift operator by a rank-one operator. The other one is a modification of an unbounded operator used by Harrison,Radjavi and Rosenthal to provide a transitive lattice.
机构:
Univ Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, FranceUniv Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, France
Ketterer, A.
Keller, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, Inst Sci Mol Orsay, CNRS, F-91405 Orsay, FranceUniv Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, France
Keller, A.
Walborn, S. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, BrazilUniv Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, France
机构:
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Henan Normal Univ, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Song, Yisheng
Qi, Liqun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China