Strongly Irreducible Operators and Indecomposable Representations of Quivers on Infinite-Dimensional Hilbert Spaces

被引:0
|
作者
Masatoshi Enomoto
Yasuo Watatani
机构
[1] Koshien University,Institute of Education and Research
[2] Kyushu University,Department of Mathematical Sciences
来源
关键词
Strongly irreducible operators; quiver; indecomposable representation; Hilbert space; Primary: 47A65; Secondary: 46C07; 47A15; 15A21; 16G20; 16G60;
D O I
暂无
中图分类号
学科分类号
摘要
We study several classes of indecomposable representations of quivers on infinite-dimensional Hilbert spaces and their relation. Many examples are constructed using strongly irreducible operators. Some problems in operator theory are rephrased in terms of representations of quivers. We shall show two kinds of constructions of quite non-trivial indecomposable Hilbert representations (H, f) of the Kronecker quiver such that End(H,f)=CI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${End(H,f) = \mathbb{C} I}$$\end{document} which is called transitive. One is a perturbation of a weighted shift operator by a rank-one operator. The other one is a modification of an unbounded operator used by Harrison,Radjavi and Rosenthal to provide a transitive lattice.
引用
收藏
页码:563 / 587
页数:24
相关论文
共 50 条
  • [41] Strongly irreducible operators on Banach spaces
    Yun Nan Zhang
    Huai Jie Zhong
    Acta Mathematica Sinica, English Series, 2012, 28 : 727 - 740
  • [42] Strongly Irreducible Operators on Banach Spaces
    Yun Nan ZHANG
    Huai Jie ZHONG
    ActaMathematicaSinica, 2012, 28 (04) : 727 - 740
  • [43] Frechet Discrete Gradient and Hessian Operators on Infinite-Dimensional Spaces
    Moreschini, Alessio
    Goksu, Gokhan
    Parisini, Thomas
    IFAC PAPERSONLINE, 2024, 58 (05): : 78 - 83
  • [44] Strongly irreducible operators on Banach spaces
    Zhang, Yun Nan
    Zhong, Huai Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (04) : 727 - 740
  • [45] Uniqueness Results of Semilinear Parabolic Equations in Infinite-Dimensional Hilbert Spaces
    Bianca, Carlo
    Dogbe, Christian
    MATHEMATICS, 2025, 13 (05)
  • [46] Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration
    Gnewuch, Michael
    Hefter, Mario
    Hinrichs, Aicke
    Ritter, Klaus
    JOURNAL OF APPROXIMATION THEORY, 2017, 222 : 8 - 39
  • [47] Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces
    Xu, Hong-Kun
    INVERSE PROBLEMS, 2010, 26 (10)
  • [48] REPRESENTATIONS OF INFINITE-DIMENSIONAL SYSTEMS
    CURTAIN, RF
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1989, 135 : 101 - 128
  • [49] PATH OF LINEAR-OPERATORS IN INFINITE DIMENSIONAL HILBERT SPACES
    BREITENECKER, M
    ACTA PHYSICA AUSTRIACA, 1974, 39 (03): : 288 - 321
  • [50] INFINITE-DIMENSIONAL GROUP REPRESENTATIONS
    MACKEY, GW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (05) : 628 - &