Holographic Relative Entropy in Infinite-Dimensional Hilbert Spaces

被引:0
|
作者
Monica Jinwoo Kang
David K. Kolchmeyer
机构
[1] Harvard University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We reformulate entanglement wedge reconstruction in the language of operator-algebra quantum error correction with infinite-dimensional physical and code Hilbert spaces. Von Neumann algebras are used to characterize observables in a boundary subregion and its entanglement wedge. Assuming that the infinite-dimensional von Neumann algebras associated with an entanglement wedge and its complement may both be reconstructed in their corresponding boundary subregions, we prove that the relative entropies measured with respect to the bulk and boundary observables are equal. We also prove the converse: when the relative entropies measured in an entanglement wedge and its complement equal the relative entropies measured in their respective boundary subregions, entanglement wedge reconstruction is possible. Along the way, we show that the bulk and boundary modular operators act on the code subspace in the same way. For holographic theories with a well-defined entanglement wedge, this result provides a well-defined notion of holographic relative entropy.
引用
收藏
页码:1665 / 1695
页数:30
相关论文
共 50 条
  • [1] Holographic Relative Entropy in Infinite-Dimensional Hilbert Spaces
    Kang, Monica Jinwoo
    Kolchmeyer, David K.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (03) : 1665 - 1695
  • [2] Controllability in infinite-dimensional Hilbert spaces
    Muresan, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (03) : 475 - 479
  • [3] INFINITE-DIMENSIONAL BICOMPLEX HILBERT SPACES
    Lavoie, Raphael Gervais
    Marchildon, Louis
    Rochon, Dominic
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (02): : 75 - 91
  • [4] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Duan, Zhoubo
    Niu, Lifang
    Wang, Yangyang
    Liu, Liang
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (06) : 1929 - 1936
  • [5] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Zhoubo Duan
    Lifang Niu
    Yangyang Wang
    Liang Liu
    [J]. International Journal of Theoretical Physics, 2017, 56 : 1929 - 1936
  • [6] SENSITIVE OBSERVABLES ON INFINITE-DIMENSIONAL HILBERT SPACES
    FORTUNATO, D
    SELLERI, F
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1976, 15 (05) : 333 - 338
  • [7] A PROPERTY OF INFINITE-DIMENSIONAL HILBERT-SPACES
    FRASCA, M
    VILLANI, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) : 352 - 361
  • [8] Continuous discretization of infinite-dimensional Hilbert spaces
    Vernaz-Gris, P.
    Ketterer, A.
    Keller, A.
    Walborn, S. P.
    Coudreau, T.
    Milman, P.
    [J]. PHYSICAL REVIEW A, 2014, 89 (05)
  • [9] INFINITE-DIMENSIONAL INTEGRATION ON WEIGHTED HILBERT SPACES
    Gnewuch, Michael
    [J]. MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2175 - 2205
  • [10] INFINITE-DIMENSIONAL HILBERT TENSORS ON SPACES OF ANALYTIC FUNCTIONS
    Song, Yisheng
    Qi, Liqun
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (07) : 1897 - 1911