INFINITE-DIMENSIONAL HILBERT TENSORS ON SPACES OF ANALYTIC FUNCTIONS

被引:2
|
作者
Song, Yisheng [1 ,2 ]
Qi, Liqun [3 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
Hilbert tensor; Analytic function; Upper bound; Bergman space; Gamma function; COMPLEMENTARITY-PROBLEMS; POSITIVE-DEFINITE; MATRIX;
D O I
10.4310/CMS.2017.v15.n7.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the m-order infinite dimensional Hilbert tensor (hypermatrix) is intrduced to define an (m-1)-homogeneous operator on the spaces of analytic functions, which is called Hilbert tensor operator. The boundedness of Hilbert tensor operator is presented on Bergman spaces A(p) (p>2(m-1)). On the base of the boundedness, two positively homogeneous operators are introduced to the spaces of analytic functions, and hence the upper bounds of norm of such two operators are found on Bergman spaces A(p) (p>2(m-1)). In particular, the norms of such two operators on Bergman spaces A(4(m-1)) are smaller than or equal to pi and pi(1/m-1), respectively.
引用
收藏
页码:1897 / 1911
页数:15
相关论文
共 50 条
  • [1] Controllability in infinite-dimensional Hilbert spaces
    Muresan, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (03) : 475 - 479
  • [2] INFINITE-DIMENSIONAL BICOMPLEX HILBERT SPACES
    Lavoie, Raphael Gervais
    Marchildon, Louis
    Rochon, Dominic
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (02): : 75 - 91
  • [3] SENSITIVE OBSERVABLES ON INFINITE-DIMENSIONAL HILBERT SPACES
    FORTUNATO, D
    SELLERI, F
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1976, 15 (05) : 333 - 338
  • [4] A PROPERTY OF INFINITE-DIMENSIONAL HILBERT-SPACES
    FRASCA, M
    VILLANI, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) : 352 - 361
  • [5] Continuous discretization of infinite-dimensional Hilbert spaces
    Vernaz-Gris, P.
    Ketterer, A.
    Keller, A.
    Walborn, S. P.
    Coudreau, T.
    Milman, P.
    [J]. PHYSICAL REVIEW A, 2014, 89 (05)
  • [6] INFINITE-DIMENSIONAL INTEGRATION ON WEIGHTED HILBERT SPACES
    Gnewuch, Michael
    [J]. MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2175 - 2205
  • [7] Holographic Relative Entropy in Infinite-Dimensional Hilbert Spaces
    Monica Jinwoo Kang
    David K. Kolchmeyer
    [J]. Communications in Mathematical Physics, 2023, 400 : 1665 - 1695
  • [8] Holographic Relative Entropy in Infinite-Dimensional Hilbert Spaces
    Kang, Monica Jinwoo
    Kolchmeyer, David K.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (03) : 1665 - 1695
  • [9] Quantum error correction on infinite-dimensional Hilbert spaces
    Beny, Cedric
    Kempf, Achim
    Kribs, David W.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [10] THERMAL EQUILIBRIUM DISTRIBUTION IN INFINITE-DIMENSIONAL HILBERT SPACES
    Tumulka, Roderich
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2020, 86 (03) : 303 - 313