On the Ferrers property of valued interval orders

被引:1
|
作者
Susana Díaz
Bernard De Baets
Susana Montes
机构
[1] University of Oviedo,Dept. Statistics and O. R.
[2] Ghent University,Dept. of Appl. Math., Biometrics and Process Control
来源
TOP | 2011年 / 19卷
关键词
Total interval order; Partial interval order; Ferrers property; Valued relation; Completeness; 62C99; 91B08; 04A72;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relationship between the Ferrers property and the notion of interval order in the context of valued relations. Given a crisp preference structure without incomparability, the strict preference relation satisfies the Ferrers property if and only if the associated weak preference relation does. These conditions characterize a total interval order. For valued relations the Ferrers property can be written in two different and non-equivalent ways. In this work, we compare these properties by finding the kind of completeness they imply. Moreover, we study whether they still characterize a valued total interval orders.
引用
收藏
页码:421 / 447
页数:26
相关论文
共 50 条
  • [1] On the Ferrers property of valued interval orders
    Diaz, Susana
    De Baets, Bernard
    Montes, Susana
    [J]. TOP, 2011, 19 (02) : 421 - 447
  • [2] Comparison of two versions of the Ferrers property of fuzzy interval orders
    Diaz, Susana
    De Baets, Bernard
    Montes, Susana
    [J]. PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 780 - 785
  • [3] A valued Ferrers relation for interval comparison
    Oeztuerk, Meltem
    Tsoukias, Alexis
    [J]. FUZZY SETS AND SYSTEMS, 2015, 266 : 47 - 66
  • [4] Interval-valued implications and interval-valued strong equality index with admissible orders
    Zapata, H.
    Bustince, H.
    Montes, S.
    Bedregal, B.
    Dirnuro, G. P.
    Takac, Z.
    Baczynski, M.
    Fernandez, J.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 : 91 - 109
  • [5] REPRESENTING INTERVAL ORDERS BY A SINGLE REAL-VALUED FUNCTION
    BRIDGES, DS
    [J]. JOURNAL OF ECONOMIC THEORY, 1985, 36 (01) : 149 - 155
  • [6] ON FAMILIES OF SEMIORDERS AND INTERVAL ORDERS IMBEDDED IN A VALUED STRUCTURE OF PREFERENCE - A SURVEY
    ROUBENS, M
    VINCKE, P
    [J]. INFORMATION SCIENCES, 1984, 34 (02) : 187 - 198
  • [7] Interval-valued fuzzy logical connectives with respect to admissible orders
    He, X. X.
    Li, Y. F.
    Yang, B.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (04): : 1 - 19
  • [8] Interval-valued seminormed fuzzy operators based on admissible orders
    Boczek, Michal
    Jin, LeSheng
    Kaluszka, Marek
    [J]. INFORMATION SCIENCES, 2021, 574 : 96 - 110
  • [9] Use of the Domination Property for Interval Valued Digital Signal Processing
    Strauss, Olivier
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2010, 2010, 6379 : 24 - 27
  • [10] Sufficient conditions for interval-valued optimal control problems in admissible orders
    Lifeng Li
    Jianke Zhang
    [J]. Soft Computing, 2024, 28 (4) : 2843 - 2850