Sufficient conditions for interval-valued optimal control problems in admissible orders

被引:0
|
作者
Lifeng Li
Jianke Zhang
机构
[1] Xi’an University of Posts and Telecommunications,School of Science
[2] Xi’an University of Posts and Telecommunications,Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing
关键词
Interval-valued optimal control; Interval-valued objective function; Admissible order; Optimal solution; Kuhn–Tucker optimality condition;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the optimal control problems with an interval-valued objective function. We consider a type of total order relationships ≤adm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le _{adm}$$\end{document} between two intervals. For each total order relationship, Kuhn–Tucker sufficient conditions for the optimal control problems with an interval-valued objective function are obtained. A numerical example is considered and solved. Kuhn–Tucker sufficient conditions provided under the total order relationship ≤adm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le _{adm}$$\end{document} are sufficient conditions under the partial order relationship ⪯LU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\preceq _{LU}$$\end{document} for interval-valued optimal control problems. The results of this paper could help construct evolutionary algorithms to solve interval-valued optimal control problems.
引用
收藏
页码:2843 / 2850
页数:7
相关论文
共 50 条
  • [1] Sufficient conditions for interval-valued optimal control problems in admissible orders
    Li, Lifeng
    Zhang, Jianke
    [J]. SOFT COMPUTING, 2024, 28 (04) : 2843 - 2850
  • [2] Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders
    Li, Lifeng
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2023, 22 (02) : 247 - 265
  • [3] Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders
    Lifeng Li
    [J]. Fuzzy Optimization and Decision Making, 2023, 22 : 247 - 265
  • [4] Interval-valued implications and interval-valued strong equality index with admissible orders
    Zapata, H.
    Bustince, H.
    Montes, S.
    Bedregal, B.
    Dirnuro, G. P.
    Takac, Z.
    Baczynski, M.
    Fernandez, J.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 : 91 - 109
  • [5] Interval-valued fuzzy logical connectives with respect to admissible orders
    He, X. X.
    Li, Y. F.
    Yang, B.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (04): : 1 - 19
  • [6] Interval-valued seminormed fuzzy operators based on admissible orders
    Boczek, Michal
    Jin, LeSheng
    Kaluszka, Marek
    [J]. INFORMATION SCIENCES, 2021, 574 : 96 - 110
  • [7] Necessary and sufficient conditions for interval-valued differentiability
    Osuna-Gomez, Rafaela
    Mendonca da Costa, Tiago
    Hernandez-Jimenez, Beatriz
    Ruiz-Garzon, Gabriel
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2319 - 2333
  • [8] Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory
    Asiain, Maria J.
    Bustince, Humberto
    Mesiar, Radko
    Kolesarova, Anna
    Takac, Zdenko
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (02) : 556 - 568
  • [9] Decision making with an interval-valued fuzzy preference relation and admissible orders
    Bentkowska, Urszula
    Bustince, Humberto
    Jurio, Aranzazu
    Pagola, Miguel
    Pekala, Barbara
    [J]. APPLIED SOFT COMPUTING, 2015, 35 : 792 - 801
  • [10] On Admissible Total Orders for Interval-valued Intuitionistic Fuzzy Membership Degrees
    Da Silva, I. A.
    Bedregal, B.
    Santiago, R. H. N.
    [J]. FUZZY INFORMATION AND ENGINEERING, 2016, 8 (02) : 169 - 182