Interval-valued implications and interval-valued strong equality index with admissible orders

被引:53
|
作者
Zapata, H. [1 ]
Bustince, H. [2 ,3 ]
Montes, S. [4 ]
Bedregal, B. [5 ]
Dirnuro, G. P. [3 ,6 ]
Takac, Z. [7 ]
Baczynski, M. [8 ]
Fernandez, J. [2 ,3 ]
机构
[1] Univ Cent Venezuela, Fac Ciencias, Ave los Ilustres, Caracas 1020, Venezuela
[2] Univ Publ Navarra, Dept Automat & Comp, Campus Arrosadia S-N, Pamplona 31006, Spain
[3] Univ Publ Navarra, Inst Smart Cities, Pamplona, Spain
[4] Univ Oviedo, Dept Stat & OR, Oviedo, Asturias, Spain
[5] Univ Fed Rio Grande do Norte, Dept Informat & Matemat Aplicada, Campus Univ S-N, BR-59078900 Natal, RN, Brazil
[6] Univ Fed Rio Grande, Ctr Ciencias Comp, Ave Italia,Campus Carreiros, BR-96203900 Rio Grande, Brazil
[7] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Radlinskeho 9, Bratislava, Slovakia
[8] Univ Silesia, Inst Math, Ul Bankowa 14, PL-40007 Katowice, Poland
关键词
Interval-valued fuzzy implications; Admissible order; Interval-valued generalized modus ponens; Interval-valued strong equality index; FUZZY IMPLICATION OPERATORS; INTUITIONISTIC FUZZY; AGGREGATION FUNCTIONS; CONSTRUCTION; SETS; GENERATION;
D O I
10.1016/j.ijar.2017.05.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we introduce the definition of interval-valued fuzzy implication function with respect to any total order between intervals. We also present different construction methods for such functions. We show that the advantage of our definitions and constructions lays on that we can adapt to the interval-valued case any inequality in the fuzzy setting, as the one of the generalized modus ponens. We also introduce a strong equality measure between interval-valued fuzzy sets, in which we take the width of the considered intervals into account, and, finally, we discuss a construction method for this measure using implication functions with respect to total orders. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 109
页数:19
相关论文
共 50 条
  • [1] Pseudo Strong Equality Indices for Interval-Valued Fuzzy Sets with respect to Admissible Orders
    De Miguel, Laura
    Sesma-Sara, Mikel
    Fernandez, Javier
    Lopez-Molina, Carlos
    Bustince, Humberto
    Jose Asiain, Maria
    [J]. 2017 JOINT 17TH WORLD CONGRESS OF INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (IFSA-SCIS), 2017,
  • [2] Interval-valued fuzzy logical connectives with respect to admissible orders
    He, X. X.
    Li, Y. F.
    Yang, B.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (04): : 1 - 19
  • [3] Interval-valued seminormed fuzzy operators based on admissible orders
    Boczek, Michal
    Jin, LeSheng
    Kaluszka, Marek
    [J]. INFORMATION SCIENCES, 2021, 574 : 96 - 110
  • [4] UNIVERSAL APPROXIMATION OF INTERVAL-VALUED FUZZY SYSTEMS BASED ON INTERVAL-VALUED IMPLICATIONS
    Li, D.
    Xie, Y.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2016, 13 (06): : 89 - 110
  • [5] Interval-Valued Cores and Interval-Valued Dominance Cores of Cooperative Games Endowed with Interval-Valued Payoffs
    Wu, Hsien-Chung
    [J]. MATHEMATICS, 2018, 6 (11)
  • [6] Sufficient conditions for interval-valued optimal control problems in admissible orders
    Lifeng Li
    Jianke Zhang
    [J]. Soft Computing, 2024, 28 (4) : 2843 - 2850
  • [7] Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory
    Asiain, Maria J.
    Bustince, Humberto
    Mesiar, Radko
    Kolesarova, Anna
    Takac, Zdenko
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (02) : 556 - 568
  • [8] Decision making with an interval-valued fuzzy preference relation and admissible orders
    Bentkowska, Urszula
    Bustince, Humberto
    Jurio, Aranzazu
    Pagola, Miguel
    Pekala, Barbara
    [J]. APPLIED SOFT COMPUTING, 2015, 35 : 792 - 801
  • [9] Sufficient conditions for interval-valued optimal control problems in admissible orders
    Li, Lifeng
    Zhang, Jianke
    [J]. SOFT COMPUTING, 2024, 28 (04) : 2843 - 2850
  • [10] On Admissible Total Orders for Interval-valued Intuitionistic Fuzzy Membership Degrees
    Da Silva, I. A.
    Bedregal, B.
    Santiago, R. H. N.
    [J]. FUZZY INFORMATION AND ENGINEERING, 2016, 8 (02) : 169 - 182