Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory

被引:45
|
作者
Asiain, Maria J. [1 ]
Bustince, Humberto [1 ]
Mesiar, Radko [2 ,3 ]
Kolesarova, Anna [4 ]
Takac, Zdenko [4 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Automat & Computac, Pamplona 31006, Spain
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Bratislava 81237, Slovakia
[3] Univ Ostrava, Inst Res Applicat Fuzzy Modeling, Ostrava 70800, Czech Republic
[4] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
关键词
Admissible order; equilibrium point; interval-valued fuzzy negations; intervals; strong negations on intervals; total order; RESTRICTED EQUIVALENCE FUNCTIONS; MULTICRITERIA DECISION-MAKING; INTUITIONISTIC FUZZY; AGGREGATION FUNCTIONS; IMPLICATION OPERATORS; CONSTRUCTION; GENERATION;
D O I
10.1109/TFUZZ.2017.2686372
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Admissible orders have brought the structure of chains in the framework of interval-valued fuzzy sets. However, a deeper study of functions monotone with respect to admissible orders is still missing in the literature. In this work, we consider the construction of negations and strong negations on intervals with respect to admissible orders, in particular, for the Xu and Yager and lexicographical orders, as well as for those based on K-alpha operators. We introduce and discuss an approach to the construction of strong negations on intervals with respect to K-alpha,(beta) orders based on an arbitrary couple of strong negations defined over the standard real interval [0, 1]. The introduced strong negations have a deep impact on all fields exploiting fuzzy methods dealing with intervals, allowing to introduce complements, dual aggregations, implications, entropies, etc.
引用
收藏
页码:556 / 568
页数:13
相关论文
共 50 条
  • [1] Interval-valued fuzzy logical connectives with respect to admissible orders
    He, X. X.
    Li, Y. F.
    Yang, B.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (04): : 1 - 19
  • [2] Novel construction methods of interval-valued fuzzy negations and aggregation functions based on admissible orders
    Gupta, Vikash Kumar
    Massanet, Sebastia
    Vemuri, Nageswara Rao
    [J]. FUZZY SETS AND SYSTEMS, 2023, 473
  • [3] Pseudo Strong Equality Indices for Interval-Valued Fuzzy Sets with respect to Admissible Orders
    De Miguel, Laura
    Sesma-Sara, Mikel
    Fernandez, Javier
    Lopez-Molina, Carlos
    Bustince, Humberto
    Jose Asiain, Maria
    [J]. 2017 JOINT 17TH WORLD CONGRESS OF INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (IFSA-SCIS), 2017,
  • [4] Interval-valued seminormed fuzzy operators based on admissible orders
    Boczek, Michal
    Jin, LeSheng
    Kaluszka, Marek
    [J]. INFORMATION SCIENCES, 2021, 574 : 96 - 110
  • [5] Interval-valued contractive fuzzy negations
    Bedregal, Benjamin
    Bustince, Humberto
    Fernandez, Javier
    Deschrijver, Glad
    Mesiar, Radko
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [6] Decision making with an interval-valued fuzzy preference relation and admissible orders
    Bentkowska, Urszula
    Bustince, Humberto
    Jurio, Aranzazu
    Pagola, Miguel
    Pekala, Barbara
    [J]. APPLIED SOFT COMPUTING, 2015, 35 : 792 - 801
  • [7] On Admissible Total Orders for Interval-valued Intuitionistic Fuzzy Membership Degrees
    Da Silva, I. A.
    Bedregal, B.
    Santiago, R. H. N.
    [J]. FUZZY INFORMATION AND ENGINEERING, 2016, 8 (02) : 169 - 182
  • [8] Interval-valued implications and interval-valued strong equality index with admissible orders
    Zapata, H.
    Bustince, H.
    Montes, S.
    Bedregal, B.
    Dirnuro, G. P.
    Takac, Z.
    Baczynski, M.
    Fernandez, J.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 : 91 - 109
  • [9] Representability in interval-valued fuzzy set theory
    Deschrijver, Glad
    Cornelis, Chris
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2007, 15 (03) : 345 - 361
  • [10] INTEGRABILITY OF AN INTERVAL-VALUED MULTIFUNCTION WITH RESPECT TO AN INTERVAL-VALUED SET MULTIFUNCTION
    Pap, E.
    Iosif, A.
    Gavrilut, A.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2018, 15 (03): : 47 - 63