Comparison of two versions of the Ferrers property of fuzzy interval orders

被引:0
|
作者
Diaz, Susana [1 ]
De Baets, Bernard [2 ]
Montes, Susana [1 ]
机构
[1] Univ Oviedo, Dept Stat & OR, Oviedo, Spain
[2] Univ Ghent, Dept Appl Math Biometr & Proc Control, Ghent, Belgium
关键词
completeness; Ferrers property; partial interval order; total interval order; fuzzy relation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We focus on the Ferrers property of fuzzy preference relations. We study the connection between the Ferrers property and fuzzy interval orders. A crisp total interval order is characterized by the Ferrers property of its strict preference relation. Also, a crisp preference structure is a total interval order if and only if its large preference relation satisfies the Ferrers property. For fuzzy relations the Ferrers property admits two non equivalent expressions. Here we compare both conditions by means of completeness. We also study if they characterize a fuzzy total interval order.
引用
收藏
页码:780 / 785
页数:6
相关论文
共 50 条
  • [1] On the Ferrers property of valued interval orders
    Susana Díaz
    Bernard De Baets
    Susana Montes
    [J]. TOP, 2011, 19 : 421 - 447
  • [2] On the Ferrers property of valued interval orders
    Diaz, Susana
    De Baets, Bernard
    Montes, Susana
    [J]. TOP, 2011, 19 (02) : 421 - 447
  • [3] A valued Ferrers relation for interval comparison
    Oeztuerk, Meltem
    Tsoukias, Alexis
    [J]. FUZZY SETS AND SYSTEMS, 2015, 266 : 47 - 66
  • [4] Towards fuzzy interval orders
    Diaz, S.
    Montes, S.
    De Baets, B.
    [J]. COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 211 - 216
  • [5] Interval orders with two interval lengths
    Boyadzhiyska, Simona
    Isaak, Garth
    Trenk, Ann N.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 267 : 52 - 63
  • [6] Fuzzy interval and semi-orders
    Haven, E
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 139 (02) : 302 - 316
  • [7] Weak and strong fuzzy interval orders
    DeBaets, B
    VandeWalle, B
    [J]. FUZZY SETS AND SYSTEMS, 1996, 79 (02) : 213 - 225
  • [8] An alternative definition for fuzzy interval orders
    Bufardi, A
    [J]. FUZZY SETS AND SYSTEMS, 2003, 133 (02) : 249 - 259
  • [9] Interval valued versions of T-conorms, fuzzy negations and fuzzy implications
    Bedregal, Benjamin Callejas
    Takahashi, Adriana
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 1981 - +
  • [10] Comparison of Two Versions of the TOMM
    Vanderslice-Barr, J.
    [J]. ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2009, 24 (05) : 484 - 484