On the Ferrers property of valued interval orders

被引:1
|
作者
Susana Díaz
Bernard De Baets
Susana Montes
机构
[1] University of Oviedo,Dept. Statistics and O. R.
[2] Ghent University,Dept. of Appl. Math., Biometrics and Process Control
来源
TOP | 2011年 / 19卷
关键词
Total interval order; Partial interval order; Ferrers property; Valued relation; Completeness; 62C99; 91B08; 04A72;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relationship between the Ferrers property and the notion of interval order in the context of valued relations. Given a crisp preference structure without incomparability, the strict preference relation satisfies the Ferrers property if and only if the associated weak preference relation does. These conditions characterize a total interval order. For valued relations the Ferrers property can be written in two different and non-equivalent ways. In this work, we compare these properties by finding the kind of completeness they imply. Moreover, we study whether they still characterize a valued total interval orders.
引用
收藏
页码:421 / 447
页数:26
相关论文
共 50 条
  • [21] Ordered sets with interval representation and (m,n)-Ferrers relation
    Meltem Öztürk
    [J]. Annals of Operations Research, 2008, 163 : 177 - 196
  • [22] THE α-INTERVAL VALUED FUZZY SETS DEFINED ON α-INTERVAL VALUED SET
    Cuvalcioglu, Gokhan
    Bal, Arif
    Citil, Mehmet
    [J]. THERMAL SCIENCE, 2022, 26 (SpecialIssue2): : S665 - S679
  • [23] INTERVAL-GRAPHS AND INTERVAL ORDERS
    FISHBURN, PC
    [J]. DISCRETE MATHEMATICS, 1985, 55 (02) : 135 - 149
  • [24] Interval orders with two interval lengths
    Boyadzhiyska, Simona
    Isaak, Garth
    Trenk, Ann N.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 267 : 52 - 63
  • [25] INTERVAL REPRESENTATIONS FOR INTERVAL ORDERS AND SEMIORDERS
    FISHBURN, PC
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1973, 10 (01) : 91 - 105
  • [26] Ordered sets with interval representation and (m,n)-Ferrers relation
    Ozturk, Meltem
    [J]. ANNALS OF OPERATIONS RESEARCH, 2008, 163 (01) : 177 - 196
  • [27] Shellability of interval orders
    Billera, LJ
    Myers, AN
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1998, 15 (02): : 113 - 117
  • [28] Basic Interval Orders
    Amy Myers
    [J]. Order, 1999, 16 : 261 - 275
  • [29] Interval orders and dimension
    Kierstead, HA
    Trotter, WT
    [J]. DISCRETE MATHEMATICS, 2000, 213 (1-3) : 179 - 188
  • [30] ON THE DIRECTIONALITY OF INTERVAL ORDERS
    BOUCHITTE, V
    JEGOU, R
    RAMPON, JX
    [J]. DISCRETE APPLIED MATHEMATICS, 1994, 48 (01) : 87 - 92