Weakly principally quasi-Baer skew generalized power series rings

被引:0
|
作者
Ali Majidinya
Ahmad Moussavi
机构
[1] Tarbiat Modares University,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
Skew generalized power series ring; Weakly principally quasi-Baer ring; Weakly rigid ring; -unital ideal; 16W60; 16S35; 16S36;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S,≤)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\le )$$\end{document} be a strictly totally ordered monoid and R an (S,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\omega )$$\end{document}-weakly rigid ring, where ω:S→End(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega :S\rightarrow End(R)$$\end{document} is a monoid homomorphism. In this paper, we study the weakly p.q.-Bear property of the skew generalized power series ring R[[S,ω]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[S,\omega ]]$$\end{document}. As a consequence, the weakly p.q.-Baer property of the skew power series ring R[[x;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x;\alpha ]]$$\end{document} and the skew Laurent power series ring R[[x,x-1;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x,x^{-1};\alpha ]]$$\end{document} are determined, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is a ring endomorphism of R.
引用
收藏
页码:409 / 425
页数:16
相关论文
共 50 条
  • [41] ORE EXTENSIONS OF QUASI-BAER RINGS
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2030 - 2039
  • [42] Baer and quasi-Baer annihilator conditions for nearrings and rings
    Birkenmeier, Gary F.
    Kilic, Nayil
    Mutlu, Figen Takil
    Tastan, Edanur
    Tercan, Adnan
    Yasar, Ramazan
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1063 - 1070
  • [43] Group Actions on Quasi-Baer Rings
    Jin, Hai Lan
    Doh, Jaekyung
    Park, Jae Keol
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (04): : 564 - 582
  • [44] Rings which are Baer or quasi-Baer modulo a radical
    Ryan, C. Edward
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4557 - 4564
  • [45] A sheaf representation of quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 146 (03) : 209 - 223
  • [46] On ore extensions of quasi-Baer rings
    Nasr-Isfahani, A. R.
    Moussavi, A.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (02) : 211 - 224
  • [47] Polynomial extensions of quasi-Baer rings
    E. Hashemi
    A. Moussavi
    [J]. Acta Mathematica Hungarica, 2005, 107 : 207 - 224
  • [48] Polynomial extensions of quasi-Baer rings
    Hashemi, E
    Moussavi, A
    [J]. ACTA MATHEMATICA HUNGARICA, 2005, 107 (03) : 207 - 224
  • [49] Baer rings of generalized power series
    Zhongkui, L
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 463 - 469
  • [50] A simple proof of a theorem on quasi-Baer rings
    Zhou, YQ
    [J]. ARCHIV DER MATHEMATIK, 2003, 81 (03) : 253 - 254