Weakly principally quasi-Baer skew generalized power series rings

被引:0
|
作者
Ali Majidinya
Ahmad Moussavi
机构
[1] Tarbiat Modares University,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
Skew generalized power series ring; Weakly principally quasi-Baer ring; Weakly rigid ring; -unital ideal; 16W60; 16S35; 16S36;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S,≤)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\le )$$\end{document} be a strictly totally ordered monoid and R an (S,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\omega )$$\end{document}-weakly rigid ring, where ω:S→End(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega :S\rightarrow End(R)$$\end{document} is a monoid homomorphism. In this paper, we study the weakly p.q.-Bear property of the skew generalized power series ring R[[S,ω]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[S,\omega ]]$$\end{document}. As a consequence, the weakly p.q.-Baer property of the skew power series ring R[[x;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x;\alpha ]]$$\end{document} and the skew Laurent power series ring R[[x,x-1;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x,x^{-1};\alpha ]]$$\end{document} are determined, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is a ring endomorphism of R.
引用
收藏
页码:409 / 425
页数:16
相关论文
共 50 条
  • [21] A NOTE ON EXTENSIONS OF PRINCIPALLY QUASI-BAER RINGS
    Cheng, Yuwen
    Huang, Feng-Kuo
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (07): : 1721 - 1731
  • [22] ORE EXTENSIONS OF PRINCIPALLY QUASI-BAER RINGS
    Ben Yakoub, L'Moufadal
    Louzari, Mohamed
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 13 (02): : 137 - 151
  • [23] Prime ideals of principally quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. ACTA MATHEMATICA HUNGARICA, 2003, 98 (03) : 217 - 225
  • [24] A Sheaf Representation of Principally Quasi-Baer ∗-Rings
    Anil Khairnar
    B. N. Waphare
    [J]. Algebras and Representation Theory, 2019, 22 : 79 - 97
  • [25] Generalized quasi-Baer rings
    Moussavi, A
    Javadi, HHS
    Hashemi, E
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) : 2115 - 2129
  • [26] Prime ideals of principally quasi-Baer rings
    Birkenmeier G.F.
    Kim J.Y.
    Park J.K.
    [J]. Acta Mathematica Hungarica, 2002, 98 (3) : 217 - 225
  • [27] A NOTE ON GENERALIZED QUASI-BAER RINGS
    Anzani, M.
    Javadi, H. Haj Seyyed
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (02): : 245 - 248
  • [28] Generalized quasi-Baer -rings and Banach -algebras
    Ahmadi, Morteza
    Golestani, Nasser
    Moussavi, Ahmad
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 2207 - 2247
  • [29] Principally quasi-Baer rings (vol 29, pg 639, 2001)
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5609 - 5609
  • [30] Quasi-Baer and biregular generalized matrix rings
    Birkenmeier, Gary F.
    Davis, Donald D.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (04)