Weakly principally quasi-Baer skew generalized power series rings

被引:0
|
作者
Ali Majidinya
Ahmad Moussavi
机构
[1] Tarbiat Modares University,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
Skew generalized power series ring; Weakly principally quasi-Baer ring; Weakly rigid ring; -unital ideal; 16W60; 16S35; 16S36;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S,≤)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\le )$$\end{document} be a strictly totally ordered monoid and R an (S,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\omega )$$\end{document}-weakly rigid ring, where ω:S→End(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega :S\rightarrow End(R)$$\end{document} is a monoid homomorphism. In this paper, we study the weakly p.q.-Bear property of the skew generalized power series ring R[[S,ω]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[S,\omega ]]$$\end{document}. As a consequence, the weakly p.q.-Baer property of the skew power series ring R[[x;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x;\alpha ]]$$\end{document} and the skew Laurent power series ring R[[x,x-1;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x,x^{-1};\alpha ]]$$\end{document} are determined, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is a ring endomorphism of R.
引用
收藏
页码:409 / 425
页数:16
相关论文
共 50 条
  • [31] Polynomial extensions of generalized quasi-Baer rings
    S. Ghalandarzadeh
    H. S. Javadi
    M. Khoramdel
    [J]. Ukrainian Mathematical Journal, 2010, 62 : 804 - 808
  • [32] POLYNOMIAL EXTENSIONS OF GENERALIZED QUASI-BAER RINGS
    Ghalandarzadeh, S.
    Javadi, H. S.
    Khoramdel, M.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (05) : 804 - 808
  • [33] Principally quasi-Baer rings (vol 29, pg 639, 2001)
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5609 - 5609
  • [34] Principally Quasi-Baer Ring Hulls
    Birkenmeier, Gary F.
    Park, Jae Keol
    Rizvi, S. Tariq
    [J]. ADVANCES IN RING THEORY, 2010, : 47 - +
  • [35] Principally quasi-Baer modules and their generalizations
    Lee, Gangyong
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 4077 - 4094
  • [36] Endo-principally quasi-Baer modules
    Dana, P. Amirzadeh
    Moussavi, A.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (02)
  • [37] On generalized quasi Baer skew monoid rings
    Habibi, Mohammad
    Paykan, Kamal
    Arianpoor, Hassan
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (06)
  • [38] Baer and quasi-Baer differential polynomial rings
    Nasr-Isfahani, A. R.
    Moussavi, A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3533 - 3542
  • [39] Polynomial extensions of Baer and quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 159 (01) : 25 - 42
  • [40] Baer and quasi-Baer properties of group rings
    Yi, Zhong
    Zhou, Yiqiang
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 83 : 285 - 296