Rings which are Baer or quasi-Baer modulo a radical

被引:0
|
作者
Ryan, C. Edward [1 ]
机构
[1] San Diego State Univ Imperial Valley Campus, Dept Math, Calexico, CA 92231 USA
关键词
Baer ring; idempotent; Morita invariant; quasi-Baer ring; radical;
D O I
10.1080/00927872.2021.1924185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Baer and quasi-Baer rings are important classes of algebraic objects, and their properties have roots in analysis. In this paper, we investigate rings R such that R/rho(R) is Baer or quasi-Baer, where rho(R) is either the Jacobson radical or the prime radical of R. Preliminary characterizations and results are obtained; in particular, we show that the property of R/P(R) being quasi-Baer is a Morita invariant.
引用
收藏
页码:4557 / 4564
页数:8
相关论文
共 50 条
  • [1] ON BAER AND QUASI-BAER RINGS
    POLLINGHER, A
    ZAKS, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1970, 37 (01) : 127 - +
  • [2] Skew polynomial rings over σ-quasi-Baer and σ-principally quasi-Baer rings
    Han, J
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (01) : 53 - 63
  • [3] Baer and quasi-Baer differential polynomial rings
    Nasr-Isfahani, A. R.
    Moussavi, A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3533 - 3542
  • [4] Polynomial extensions of Baer and quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 159 (01) : 25 - 42
  • [5] Baer and quasi-Baer properties of group rings
    Yi, Zhong
    Zhou, Yiqiang
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 83 : 285 - 296
  • [6] Generalized quasi-Baer rings
    Moussavi, A
    Javadi, HHS
    Hashemi, E
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) : 2115 - 2129
  • [7] Baer and quasi-Baer annihilator conditions for nearrings and rings
    Birkenmeier, Gary F.
    Kilic, Nayil
    Mutlu, Figen Takil
    Tastan, Edanur
    Tercan, Adnan
    Yasar, Ramazan
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1063 - 1070
  • [8] ON SKEW QUASI-BAER RINGS
    Habibi, M.
    Moussavi, A.
    Manaviyat, R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3637 - 3648
  • [9] Principally quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) : 639 - 660
  • [10] Baer and quasi-Baer modules
    Rizvi, ST
    Roman, CS
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) : 103 - 123