Weakly principally quasi-Baer skew generalized power series rings

被引:0
|
作者
Ali Majidinya
Ahmad Moussavi
机构
[1] Tarbiat Modares University,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
Skew generalized power series ring; Weakly principally quasi-Baer ring; Weakly rigid ring; -unital ideal; 16W60; 16S35; 16S36;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S,≤)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\le )$$\end{document} be a strictly totally ordered monoid and R an (S,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S,\omega )$$\end{document}-weakly rigid ring, where ω:S→End(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega :S\rightarrow End(R)$$\end{document} is a monoid homomorphism. In this paper, we study the weakly p.q.-Bear property of the skew generalized power series ring R[[S,ω]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[S,\omega ]]$$\end{document}. As a consequence, the weakly p.q.-Baer property of the skew power series ring R[[x;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x;\alpha ]]$$\end{document} and the skew Laurent power series ring R[[x,x-1;α]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[[x,x^{-1};\alpha ]]$$\end{document} are determined, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is a ring endomorphism of R.
引用
收藏
页码:409 / 425
页数:16
相关论文
共 50 条