PRINCIPALLY QUASI-BAER SKEW POWER SERIES MODULES

被引:4
|
作者
Manaviyat, R. [1 ]
Moussavi, A. [1 ]
Habibi, M. [1 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran, Iran
关键词
Polynomial modules; Principally quasi-Baer modules; Quasi-Baer modules; Skew power series modules; Skew Laurent series modules; EXTENSIONS;
D O I
10.1080/00927872.2011.615357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M-R is called principally quasi-Baer (or simply p.q.-Baer) if the annihilator of every cyclic submodule of M-R is generated by an idempotent, as a right ideal. Let be an automorphism of R and M-R be an -compatible module and every countable subset of right semicentral idempotents in R has a generalized countable join or R satisfies the ACC on left annihilator ideals. It is shown that M-R is p.q.-Baer if and only if M[[x]](R[[x; ]]) is p.q.-Baer if and only if M[[x, x(-1)]](R[[x, x)(-1); ]] is p.q.-Baer. As a consequence, we unify and extend nontrivially many of the previously known results such as [11, 15, 20]. Examples to illustrate and delimit the theory are provided.
引用
收藏
页码:1278 / 1291
页数:14
相关论文
共 50 条