Advanced land imager superiority in lithological classification utilizing machine learning algorithms

被引:22
|
作者
Ali Shebl
Timothy Kusky
Árpád Csámer
机构
[1] University of Debrecen,Department of Mineralogy and Geology
[2] Tanta University,Department of Geology
[3] China University of Geosciences,State Key Lab of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences
[4] Badong National Observatory and Research Station for Geohazards,undefined
[5] China University of Geosciences,undefined
关键词
Lithologic mapping; ASTER; ALI; Sentinel 2; Eastern Desert;
D O I
10.1007/s12517-022-09948-w
中图分类号
学科分类号
摘要
Different types of remote sensing data are commonly used as inputs for lithological classification schemes, yet determining the best data source for each specific application is still unresolved, but critical for the best interpretations. In addition, various classifiers (i.e., artificial neural network (ANN), maximum likelihood classification (MLC), and support vector machine (SVM)) have proven their variable efficiencies in lithological mapping, yet determining which technique is preeminent is still questionable. Consequently, this study aims to test the potency of Earth observing-1 Advanced Land Imager (ALI) data with the frequently utilized Sentinel 2 (S2), ASTER, and Landsat OLI (L8) data in lithological allocation using the widely accepted ANN, MLC, and SVM, for a case study in the Um Salatit area, in the Eastern Desert of Egypt. This area has a recent geological map that is used as a reference for selecting training and testing samples required for machine learning algorithms (MLAs). The results reveal (1) ALI superiority over the most commonly used S2, ASTER, and L8; (2) SVM is much better than MLC and ANN in executing lithologic allocation; (3) S2 is strongly recommended for separating higher numbers of classes compared to ASTER, L8, and ALI. Model overfitting may negatively impact S2 results in classifying small numbers of targets; (4) we can significantly enhance the classification accuracy, to transcend 90% by blending different sensor datasets. Our new approach can help significantly in further lithologic mapping in arid regions and thus be fruitful for mineral exploration programs.
引用
收藏
相关论文
共 50 条
  • [41] Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data
    Abdi, Abdulhakim Mohamed
    GISCIENCE & REMOTE SENSING, 2020, 57 (01) : 1 - 20
  • [42] An empirical study of sentiment analysis utilizing machine learning and deep learning algorithms
    Erkantarci, Betul
    Bakal, Gokhan
    JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE, 2024, 7 (01): : 241 - 257
  • [43] Machine learning algorithms in microbial classification: a comparative analysis
    Wu, Yuandi
    Gadsden, S. Andrew
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [44] Applying Machine Learning Algorithms for the Classification of Sleep Disorders
    Alshammari, Talal Sarheed
    IEEE ACCESS, 2024, 12 (36110-36121) : 36110 - 36121
  • [45] Performance Analysis of Machine Learning Algorithms for Gender Classification
    Pondhu, Laxmi Narayana
    Kummari, Govardhani
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1626 - 1628
  • [46] Classification of Cardiac Arrhythmias Using Machine Learning Algorithms
    Garcia-Aquino, Christian
    Mujica-Vargas, Dante
    Matuz-Cruz, Manuel
    TELEMATICS AND COMPUTING, WITCOM 2021, 2021, 1430 : 174 - 185
  • [47] Comparison of Machine Learning Algorithms for Soil Type Classification
    Harlianto, Pramudyana Agus
    Setiawan, Noor Akhmad
    Adji, Teguh Bharata
    2017 3RD INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY - COMPUTER (ICST), 2017, : 7 - 10
  • [48] Machine learning algorithms application to road defects classification
    Nguyen, T. H.
    Nguyen, T. L.
    Sidorov, D. N.
    Dreglea, A. I.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2018, 12 (01): : 59 - 66
  • [49] Application of machine learning algorithms for SCG signal classification
    Natalia, Konnova
    Mikhail, Basarab
    Vera, Khaperskaya
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [50] A review of machine learning algorithms for web page classification
    Lassri, Safae
    El Habib, Benlahmar
    Abderrahim, Tragha
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 220 - 226