Advanced land imager superiority in lithological classification utilizing machine learning algorithms

被引:22
|
作者
Ali Shebl
Timothy Kusky
Árpád Csámer
机构
[1] University of Debrecen,Department of Mineralogy and Geology
[2] Tanta University,Department of Geology
[3] China University of Geosciences,State Key Lab of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences
[4] Badong National Observatory and Research Station for Geohazards,undefined
[5] China University of Geosciences,undefined
关键词
Lithologic mapping; ASTER; ALI; Sentinel 2; Eastern Desert;
D O I
10.1007/s12517-022-09948-w
中图分类号
学科分类号
摘要
Different types of remote sensing data are commonly used as inputs for lithological classification schemes, yet determining the best data source for each specific application is still unresolved, but critical for the best interpretations. In addition, various classifiers (i.e., artificial neural network (ANN), maximum likelihood classification (MLC), and support vector machine (SVM)) have proven their variable efficiencies in lithological mapping, yet determining which technique is preeminent is still questionable. Consequently, this study aims to test the potency of Earth observing-1 Advanced Land Imager (ALI) data with the frequently utilized Sentinel 2 (S2), ASTER, and Landsat OLI (L8) data in lithological allocation using the widely accepted ANN, MLC, and SVM, for a case study in the Um Salatit area, in the Eastern Desert of Egypt. This area has a recent geological map that is used as a reference for selecting training and testing samples required for machine learning algorithms (MLAs). The results reveal (1) ALI superiority over the most commonly used S2, ASTER, and L8; (2) SVM is much better than MLC and ANN in executing lithologic allocation; (3) S2 is strongly recommended for separating higher numbers of classes compared to ASTER, L8, and ALI. Model overfitting may negatively impact S2 results in classifying small numbers of targets; (4) we can significantly enhance the classification accuracy, to transcend 90% by blending different sensor datasets. Our new approach can help significantly in further lithologic mapping in arid regions and thus be fruitful for mineral exploration programs.
引用
收藏
相关论文
共 50 条
  • [21] Comparative Analysis of Machine Learning Algorithms With Advanced Feature Extraction for ECG Signal Classification
    Subba, Tanuja
    Chingtham, Tejbanta
    IEEE ACCESS, 2024, 12 : 57727 - 57740
  • [22] Classification of leafy spurge with Earth Observing-1 Advanced Land Imager
    Stitt, Susan
    Root, Ralph
    Brown, Karl
    Hager, Steve
    Mladinich, Carol
    Anderson, Gerald L.
    Dudek, Kathleen
    Bustos, Monica Ruiz
    Kokaly, Raymond
    RANGELAND ECOLOGY & MANAGEMENT, 2006, 59 (05) : 507 - 511
  • [23] Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data
    DeFries, RS
    Chan, JCW
    REMOTE SENSING OF ENVIRONMENT, 2000, 74 (03) : 503 - 515
  • [24] A Review of Machine Learning Algorithms for Text Classification
    Li, Ruiguang
    Liu, Ming
    Xu, Dawei
    Gao, Jiaqi
    Wu, Fudong
    Zhu, Liehuang
    CYBER SECURITY, CNCERT 2021, 2022, 1506 : 226 - 234
  • [25] Petrofacies classification using machine learning algorithms
    Silva, Adrielle A.
    Tavares, Monica W.
    Carrasquilla, Abel
    Missagia, Roseane
    Ceia, Marco
    GEOPHYSICS, 2020, 85 (04) : WA101 - WA113
  • [26] Classification of water subscribers by machine learning algorithms
    Dahesh, Arezoo
    Tavakkoli-Moghaddam, Reza
    Tajally, AmirReza
    Erfani-Jazi, Aseman
    Babazadeh-Behestani, Milad
    WATER AND ENVIRONMENT JOURNAL, 2024, 38 (01) : 45 - 58
  • [27] Malware Detection and Classification with Machine Learning Algorithms
    Kumar, R. Vinoth
    Islam, Md Mojahidul
    Apon, Abir Hossain
    Prantha, C. S.
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 5, SMARTCOM 2024, 2024, 949 : 143 - 158
  • [28] Application of Machine Learning Algorithms for Visibility Classification
    Ortega, Luz
    Otero, Luis Daniel
    Otero, Carlos
    2019 13TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2019,
  • [29] Learning Algorithms for the Classification Restricted Boltzmann Machine
    Larochelle, Hugo
    Mandel, Michael
    Pascanu, Razvan
    Bengio, Yoshua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 643 - 669
  • [30] Ransomware Classification and Detection With Machine Learning Algorithms
    Masum, Mohammad
    Faruk, Md Jobair Hossain
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    Adnan, Muhaiminul Islam
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 316 - 322