Deep Optimization Prior for THz Model Parameter Estimation

被引:2
|
作者
Wong, Tak Ming [1 ]
Bauermeister, Hartmut [2 ]
Kahl, Matthias [3 ]
Bolivar, Peter Haring [3 ]
Moeller, Michael [2 ]
Kolb, Andreas [1 ]
机构
[1] Univ Siegen, Ctr Sensor Syst ZESS, Comp Graph & Multimedia Syst Grp, Siegen, Germany
[2] Univ Siegen, Ctr Sensor Syst ZESS, Comp Vis Grp, Siegen, Germany
[3] Univ Siegen, Ctr Sensor Syst ZESS, Inst High Frequency & Quantum Elect HQE, Siegen, Germany
关键词
TERAHERTZ; ALGORITHMS; WAVE;
D O I
10.1109/WACV51458.2022.00410
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a deep optimization prior approach with application to the estimation of material-related model parameters from terahertz (THz) data that is acquired using a Frequency Modulated Continuous Wave (FMCW) THz scanning system. A stable estimation of the THz model parameters for low SNR and shot noise configurations is essential to achieve acquisition times required for applications in, e.g., quality control. Conceptually, our deep optimization prior approach estimates the desired THz model parameters by optimizing for the weights of a neural network. While such a technique was shown to improve the reconstruction quality for convex objectives in the seminal work of Ulyanovet al., our paper demonstrates that deep priors also allow to find better local optima in the non-convex energy landscape of the nonlinear inverse problem arising from THz imaging. We verify this claim numerically on various THz parameter estimation problems for synthetic and real data under low SNR and shot noise conditions. While the low SNR scenario not even requires regularization, the impact of shot noise is significantly reduced by total variation (TV) regularization. We compare our approach with existing optimization techniques that require sophisticated physically motivated initialization, and with a 1D single-pixel reparametrization method.
引用
收藏
页码:4049 / 4058
页数:10
相关论文
共 50 条
  • [11] An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model
    Wu, Jibo
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [12] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [13] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [14] Parameter estimation in stochastic mammogram model by heuristic optimization techniques
    Selvan, S. Easter
    Xavier, C. Cecil
    Karssemeijer, Nico
    Sequeira, Jean
    Cherian, Rekha A.
    Dhala, Bharathi Y.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (04): : 685 - 695
  • [15] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [16] Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization
    Xu, Xing
    Li, Yuanxiang
    Wu, Yu
    Du, Xin
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 679 - 686
  • [17] Parameter estimation and treatment optimization in a stochastic model for immunotherapy of cancer
    Diabate, Modibo
    Coquille, Loren
    Samson, Adeline
    JOURNAL OF THEORETICAL BIOLOGY, 2020, 502
  • [18] DEEP SYNTHESIZER PARAMETER ESTIMATION
    Barkan, Oren
    Tsiris, David
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3887 - 3891
  • [19] A framework for parameter estimation and model selection in kernel deep stacking networks
    Welchowski, Thomas
    Schmid, Matthias
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2016, 70 : 31 - 40
  • [20] Research on input parameter optimization for NOx deep learning prediction model
    Qiu, Tao
    Liu, Zedu
    Lei, Yan
    Ma, Xuejian
    Chen, Zexun
    Li, Ning
    Fu, Jun
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2024, 25 (12) : 2111 - 2124