Parameter estimation in stochastic mammogram model by heuristic optimization techniques

被引:12
|
作者
Selvan, S. Easter [1 ]
Xavier, C. Cecil
Karssemeijer, Nico
Sequeira, Jean
Cherian, Rekha A.
Dhala, Bharathi Y.
机构
[1] Univ Mediterranee, Lab Sci Informat & Syst, F-13288 Marseille 9, France
[2] Univ Nijmegen St Radboud Hosp, Med Ctr, Dept Radiol, NL-6500 HB Nijmegen, Netherlands
[3] Wipro Technol, Bangalore 560100, Karnataka, India
[4] Christian Med Coll & Hosp, Dept Radiol, Vellore 632004, Tamil Nadu, India
[5] Precis Diagnost Pvt Ltd, Madras 600010, Tamil Nadu, India
关键词
breast density pattern; evolutionary programming (EP); expectation-maximization (EM); histogram quantization; parameter estimation; particle swarm optimization (PSO); segmentation; statistical image model;
D O I
10.1109/TITB.2006.874197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The appearance of disproportionately large amounts of high-density breast parenchyma in mammograms has been found to be a strong indicator of the risk of developing breast cancer. Hence, the breast density model is popular for risk estimation or for monitoring breast density change in prevention or intervention programs. However, the efficiency of such a stochastic model depends on the accuracy of estimation of the model's parameter set. We propose a new approach-heuristic optimization-to estimate more accurately the model parameter set as compared to the conventional and popular expectation-maximization (EM) algorithm. After initial segmentation of a given mammogram, the finite generalized Gaussian mixture (FGGM) model is constructed by computing the statistics associated with different image regions. The model parameter set thus obtained is estimated by particle swarm optimization (PSO) and evolutionary programming (EP) techniques, where the objective function to be minimized is the relative entropy between the image histogram and the estimated density distributions. When our heuristic approach was applied to different categories of mammograms from the Mini-MIAS database, it yielded lower floor of estimation error in 109 out of 112 cases (97.3%), and 101 out of 102 cases (99.0%), for the number of image regions being five and eight, respectively, with the added advantage of faster convergence rate, when compared to the EM approach. Besides, the estimated density model preserves the number of regions specified by the information-theoretic criteria in all the test cases, and the assessment of the segmentation results by radiologists is promising.
引用
收藏
页码:685 / 695
页数:11
相关论文
共 50 条
  • [1] A parameter optimization heuristic for a temperature estimation model
    J. Cole Smith
    Dale L. Henderson
    Alfonso Ortega
    Jason DeVoe
    [J]. Optimization and Engineering, 2009, 10 : 19 - 42
  • [2] A parameter optimization heuristic for a temperature estimation model
    Smith, J. Cole
    Henderson, Dale L.
    Ortega, Alfonso
    DeVoe, Jason
    [J]. OPTIMIZATION AND ENGINEERING, 2009, 10 (01) : 19 - 42
  • [3] Stochastic approximation techniques, applied to parameter estimation in a biological model
    Renotte, C
    Wouwer, AV
    [J]. IDAACS'2003: PROCEEDINGS OF THE SECOND IEEE INTERNATIONAL WORKSHOP ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS, 2003, : 261 - 265
  • [4] Parameter estimation and treatment optimization in a stochastic model for immunotherapy of cancer
    Diabate, Modibo
    Coquille, Loren
    Samson, Adeline
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2020, 502
  • [5] Photovoltaic Parameter Estimation Using Heuristic Optimization
    Mirzapour, Omid
    Arpanahi, Sahand Karimi
    [J]. 2017 IEEE 4TH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2017, : 792 - 797
  • [6] Parameter Estimation of Black Box Arc Model based on Heuristic Optimization Algorithms
    Zhang, Guogang
    Liu, Yakui
    Qi, Lu
    Xu, Youdang
    Kurrat, Michael
    [J]. PROCEEDINGS OF 2018 29TH INTERNATIONAL CONFERENCE ON ELECTRICAL CONTACTS AND 64TH IEEE HOLM CONFERENCE ON ELECTRICAL CONTACTS, 2018, : 66 - 70
  • [7] Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization
    Tashkova, Katerina
    Silc, Jurij
    Atanasova, Natasa
    Dzeroski, Saso
    [J]. ECOLOGICAL MODELLING, 2012, 226 : 36 - 61
  • [8] Parameter estimation for stochastic SIR model
    Li, Shuang
    Xiong, Jie
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [9] Parameter Estimation for Nonlinear Stochastic Model Using Generalized Entropy Optimization Principle
    Liu Yunlong
    Guo Lei
    Zhang Yumin
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1901 - 1905
  • [10] Bishop model parameter estimation in photovoltaic cells using metaheuristic optimization techniques
    Restrepo-Cuestas, Bonie Johana
    Montano, Jhon
    [J]. SOLAR ENERGY, 2024, 270