Stochastic approximation techniques, applied to parameter estimation in a biological model

被引:0
|
作者
Renotte, C [1 ]
Wouwer, AV [1 ]
机构
[1] Fac Polytech Mons, Serv Automat, B-7000 Mons, Belgium
关键词
stochastic approximation; optimization; nonlinear identification; biotechnology;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous perturbation stochastic approximation (SPSA) is a class of optimization algorithms which compute an approximation of the gradient and/or the Hessian of the objective function by varying, all the elements of the parameter vector simultaneously and therefore, require only a few objective function evaluations to obtain first or second-order information. Consequently, these algorithms are particularly well suited to problems involving a large number of design parameters. In this study, their potentialities are assessed in the context of nonlinear system identification. To this end, a challenging modeling application is. considered, i.e. dynamic modeling of batch animal cell cultures from sets of experimental data. The performance of the optimization algorithms are discussed in terms of efficiency, accuracy and ease of use.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 50 条
  • [1] Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation
    Sutarto, Herman Yoseph
    Boel, Rene K.
    Joelianto, Endra
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (11): : 1683 - 1691
  • [2] Parameter estimation in stochastic mammogram model by heuristic optimization techniques
    Selvan, S. Easter
    Xavier, C. Cecil
    Karssemeijer, Nico
    Sequeira, Jean
    Cherian, Rekha A.
    Dhala, Bharathi Y.
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (04): : 685 - 695
  • [3] Approximation Techniques for Stochastic Analysis of Biological Systems
    Neupane, Thakur
    Zhang, Zhen
    Madsen, Curtis
    Zheng, Hao
    Myers, Chris J.
    [J]. AUTOMATED REASONING FOR SYSTEMS BIOLOGY AND MEDICINE, 2019, 30 : 327 - 348
  • [4] Parameter Estimation Techniques Applied to Power networks
    Subudhi, B.
    Ray, P. K.
    Panda, A. M.
    Mohanty, S. R.
    [J]. 2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 1479 - +
  • [5] Parameter estimation using simultaneous perturbation stochastic approximation
    Hirokami, T
    Maeda, Y
    Tsukada, H
    [J]. ELECTRICAL ENGINEERING IN JAPAN, 2006, 154 (02) : 30 - 39
  • [6] Decentralized parameter estimation by consensus based stochastic approximation
    Stankovic, Srdjan S.
    Stankovic, Milos S.
    Stipanovic, Dusan M.
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 4930 - +
  • [7] Using stochastic approximation for parameter estimation in option pricing
    Yin, G.
    Zhang, Q.
    Zhuang, C.
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5951 - +
  • [8] Decentralized Parameter Estimation by Consensus Based Stochastic Approximation
    Stankovic, Srdjan S.
    Stankovic, Milos S.
    Stipanovic, Dusan M.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (03) : 531 - 543
  • [9] Higher-order approximation techniques for estimating stochastic parameter of a sediment transport model
    Wu, FC
    Wang, CK
    [J]. STOCHASTIC HYDROLOGY AND HYDRAULICS, 1998, 12 (06): : 359 - 375
  • [10] Higher-order approximation techniques for estimating stochastic parameter of a sediment transport model
    F.-C. Wu
    C.-K. Wang
    [J]. Stochastic Hydrology and Hydraulics, 1998, 12 : 359 - 375