Deep Optimization Prior for THz Model Parameter Estimation

被引:2
|
作者
Wong, Tak Ming [1 ]
Bauermeister, Hartmut [2 ]
Kahl, Matthias [3 ]
Bolivar, Peter Haring [3 ]
Moeller, Michael [2 ]
Kolb, Andreas [1 ]
机构
[1] Univ Siegen, Ctr Sensor Syst ZESS, Comp Graph & Multimedia Syst Grp, Siegen, Germany
[2] Univ Siegen, Ctr Sensor Syst ZESS, Comp Vis Grp, Siegen, Germany
[3] Univ Siegen, Ctr Sensor Syst ZESS, Inst High Frequency & Quantum Elect HQE, Siegen, Germany
关键词
TERAHERTZ; ALGORITHMS; WAVE;
D O I
10.1109/WACV51458.2022.00410
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a deep optimization prior approach with application to the estimation of material-related model parameters from terahertz (THz) data that is acquired using a Frequency Modulated Continuous Wave (FMCW) THz scanning system. A stable estimation of the THz model parameters for low SNR and shot noise configurations is essential to achieve acquisition times required for applications in, e.g., quality control. Conceptually, our deep optimization prior approach estimates the desired THz model parameters by optimizing for the weights of a neural network. While such a technique was shown to improve the reconstruction quality for convex objectives in the seminal work of Ulyanovet al., our paper demonstrates that deep priors also allow to find better local optima in the non-convex energy landscape of the nonlinear inverse problem arising from THz imaging. We verify this claim numerically on various THz parameter estimation problems for synthetic and real data under low SNR and shot noise conditions. While the low SNR scenario not even requires regularization, the impact of shot noise is significantly reduced by total variation (TV) regularization. We compare our approach with existing optimization techniques that require sophisticated physically motivated initialization, and with a 1D single-pixel reparametrization method.
引用
收藏
页码:4049 / 4058
页数:10
相关论文
共 50 条
  • [21] A Global Optimization Framework for Parameter Estimation of a Wind Generation Unit Model
    Fang, Qing
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 48 - 52
  • [22] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [23] Parameter Estimation of Photovoltaic Model, Using Balancing Composite Motion Optimization
    Son, Nguyen Ngoc
    Vinh, Luu The
    ACTA POLYTECHNICA HUNGARICA, 2022, 19 (11) : 27 - 46
  • [24] Analysis of Optimization Algorithms for Multiple Parameter Estimation in Model Validation Problems
    Ghimire, Saugat
    Venkatasubramanian, Vaithianathan Mani
    Torresan, Gilles
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [25] Bi-subgroup optimization algorithm for parameter estimation of a PEMFC model
    Chen, Yang
    Pi, Dechang
    Wang, Bi
    Chen, Junfu
    Xu, Yue
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 196
  • [26] Hybrid Invasive Weed Optimization Algorithm for Parameter Estimation of Pharmacokinetic Model
    Deng, Tan
    Li, Kenli
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2017, 31 (03)
  • [27] A Particle Swarm Optimization for Parameter Estimation of a Rainfall-Runoff Model
    Bardolle, Frederic
    Delay, Frederick
    Bichot, Francis
    Porel, Gilles
    Doerfliger, Nathalie
    MATHEMATICS OF PLANET EARTH, 2014, : 153 - 156
  • [28] Estimation theory and model parameter selection for therapeutic treatment plan optimization
    Xing, L
    Li, JG
    Pugachev, A
    Le, QT
    Boyer, AL
    MEDICAL PHYSICS, 1999, 26 (11) : 2348 - 2358
  • [29] Model parameter estimation of SOFCs using a modified cat optimization algorithm
    Chen, Kele
    Wang, Xinmei
    Youssefi, Naser
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [30] Chemotherapy optimization and patient model parameter estimation based on noisy measurements
    Gergics, Borbala
    Puskas, Melania
    Kisbenedek, Lilla
    Domeny, Martin Ferenc
    Kovacs, Levente
    Drexler, Daniel Andras
    ACTA POLYTECHNICA HUNGARICA, 2024, 21 (10) : 475 - 494