Generalized solitary wave solutions for the Klein-Gordon-Schrodinger equations

被引:15
|
作者
Wang, Yue-Peng [1 ]
Xia, Da-Feng [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Phys, Nanjing 210044, Peoples R China
关键词
Exp-function method; Klein-Gordon-Schrodinger equations; Exact solution; Solitary wave solution; HOMOTOPY PERTURBATION METHOD; EXP-FUNCTION METHOD; VARIATIONAL ITERATION METHOD; PERIODIC-SOLUTIONS;
D O I
10.1016/j.camwa.2009.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new generalized solitary solutions of the Klein-Gordon-Schrodinger equations are obtained using the Exp-function method, which include some known solutions obtained by the F-expansion method and the homogeneous balance method in the open literature as special cases. It is shown that the Exp-function method is a straight, concise, reliable and promising mathematical tool for solving nonlinear evolution equations arising in mathematical physics. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2300 / 2306
页数:7
相关论文
共 50 条
  • [31] GLOBAL SOLUTIONS OF THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH ROUGH DATA
    Pecher, Hartmut
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2004, 17 (1-2) : 179 - 214
  • [32] Attractors for the Klein-Gordon-Schrodinger equation
    Wang, B
    Lange, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2445 - 2457
  • [33] On Klein-Gordon-Schrodinger Control System
    Wang, Quan-Fang
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2253 - 2257
  • [34] Well-posedness results for a generalized Klein-Gordon-Schrodinger system
    Pecher, Hartmut
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)
  • [35] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [36] PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR DISCRETE KLEIN-GORDON-SCHRODINGER EQUATIONS
    Zhao, Caidi
    Xue, Gang
    Lukaszewicz, Grzegorz
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 4021 - 4044
  • [37] Fractional Klein-Gordon-Schrodinger equations with Mittag-Leffler memory
    Veeresha, P.
    Prakasha, D. G.
    Singh, Jagdev
    Kumar, Devendra
    Baleanu, Dumitru
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 68 : 65 - 78
  • [38] Attractor for dissipative Klein-Gordon-Schrodinger equations in R-3
    Guo, BL
    Li, YS
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) : 356 - 377
  • [39] Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations
    Zhao, Caidi
    Caraballo, Tomas
    Lukaszewicz, Grzegorz
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 : 1 - 32
  • [40] New energy-preserving schemes for Klein-Gordon-Schrodinger equations
    Zhang, Jingjing
    Kong, Linghua
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (15-16) : 6969 - 6982