Well-posedness results for a generalized Klein-Gordon-Schrodinger system

被引:4
|
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Gaussstr 20, D-42119 Wuppertal, Germany
关键词
WAVE-SOBOLEV SPACES;
D O I
10.1063/1.5120620
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Klein-Gordon-Schrodinger system i partial derivative(t)psi + Delta psi = phi(2)psi - phi psi, (square + 1)phi = -2|psi|(2)phi + |psi|(2) with additional cubic terms and Cauchy data psi(0)=psi(0) is an element of H-s(R-n),phi(0)=phi 0 is an element of H-k(R-n),and(partial derivative t phi)(0)=phi 1 is an element of Hk-1(R-n) in space dimensions n = 2 and n = 3. We prove the local existence, uniqueness, and continuous dependence on the data in Bourgain-Klainerman-Machedon spaces for low regularity data, e.g., for s=-1/18 and k=3/8+E in the case n = 2 and s = 0 and for k=1/2+E in the case n = 3. Global well-posedness in energy space is also obtained as a special case. Moreover, we show the "unconditional" uniqueness in the space psi is an element of C-0([0, T], H-s), phi is an element of C-0([0,T],Hs+1/2) boolean AND C-1([0,T],Hs-1/2), if s > 3/22 for n = 2 and s > 1/2 for n = 3.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] SOME NEW WELL-POSEDNESS RESULTS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM
    Pecher, Hartmut
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (1-2) : 117 - 142
  • [2] GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH HIGHER ORDER COUPLING
    Soenjaya, Agus Leonardi
    MATHEMATICA BOHEMICA, 2021, : 461 - 470
  • [3] Global well-posedness of the fractional Klein-Gordon-Schrodinger system with rough initial data
    Huang ChunYan
    Guo BoLing
    Huang DaiWen
    Li QiaoXin
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (07) : 1345 - 1366
  • [4] Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrodinger systems
    Colliander, James
    Holmer, Justin
    Tzirakis, Nikolaos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) : 4619 - 4638
  • [5] LOW-REGULARITY GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM ON R+
    Compaan, E.
    Tzirakis, N.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (07) : 3867 - 3895
  • [6] LOW REGULARITY GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH THE HIGHER-ORDER YUKAWA COUPLING
    Miao, Changxing
    Xu, Guixiang
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (06) : 643 - 656
  • [7] LOW REGULARITY WELL-POSEDNESS FOR THE 3D KLEIN - GORDON - SCHRODINGER SYSTEM
    Pecher, Hartmut
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1081 - 1096
  • [8] On Klein-Gordon-Schrodinger Control System
    Wang, Quan-Fang
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2253 - 2257
  • [9] Well-Posedness and Stability for a System of Klein-Gordon Equations
    Latioui, Naaima
    Guesmia, Amar
    Ouaoua, Amar
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [10] Klein-Gordon-Schrodinger system: Dinucleon field
    Ran, Yanping
    Shi, Qihong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)