DOUBLY ROBUST AND LOCALLY EFFICIENT ESTIMATION WITH MISSING OUTCOMES

被引:2
|
作者
Han, Peisong [1 ]
Wang, Lu [2 ]
Song, Peter X. -K. [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Augmented inverse probability weighting (AIPW); auxiliary variables; conditional empirical likelihood; mean regression; missing at random (MAR); surrogate outcome; SEMIPARAMETRIC REGRESSION-MODELS; LIKELIHOOD-BASED INFERENCE; EMPIRICAL-LIKELIHOOD;
D O I
10.5705/ss.2014.030
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parametric regression where the outcome is subject to missingness. To achieve the semiparametric efficiency bound, most existing estimation methods require the correct modeling of certain second moments of the data, which can be very challenging in practice. We propose an estimation procedure based on the conditional empirical likelihood (CEL) method. Our method does not require us to model any second moments. We study the CEL-based inverse probability weighted (CEL-IPW) and augmented inverse probability weighted (CEL-AIPW) estimators in detail. Under some regularity conditions and the missing at random (MAR) mechanism, the CEL-IPW estimator is consistent if the missingness mechanism is correctly modeled, and the CEL-AIPW estimator is consistent if either the missingness mechanism or the conditional mean of the outcome is correctly modeled. When both quantities are correctly modeled, the CEL-AIPW estimator attains the semiparametric efficiency bound without modeling any second moments. The asymptotic distributions are derived. Numerical implementation through nested optimization routines using the Newton-Raphson algorithm is discussed.
引用
收藏
页码:691 / 719
页数:29
相关论文
共 50 条
  • [21] DOUBLY ROBUST INFERENCE WITH MISSING DATA IN SURVEY SAMPLING
    Kim, Jae Kwang
    Haziza, David
    [J]. STATISTICA SINICA, 2014, 24 (01) : 375 - 394
  • [22] A comparison of doubly robust estimators of the mean with missing data
    Yang, Ye
    Little, Roderick
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (16) : 3383 - 3403
  • [23] Doubly robust estimation of attributable fractions
    Sjolander, Arvid
    Vansteelandt, Stijn
    [J]. BIOSTATISTICS, 2011, 12 (01) : 112 - 121
  • [24] Doubly Robust Estimation of Causal Effects
    Funk, Michele Jonsson
    Westreich, Daniel
    Wiesen, Chris
    Stuermer, Til
    Brookhart, M. Alan
    Davidian, Marie
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (07) : 761 - 767
  • [25] On doubly robust estimation of the hazard difference
    Dukes, Oliver
    Martinussen, Torben
    Tchetgen, Eric J. Tchetgen
    Vansteelandt, Stijn
    [J]. BIOMETRICS, 2019, 75 (01) : 100 - 109
  • [26] Locally robust Msplit estimation
    Wyszkowska, Patrycja
    Duchnowski, Robert
    [J]. JOURNAL OF APPLIED GEODESY, 2024,
  • [27] Semiparametric double robust and efficient estimation for mean functionals with response missing at random
    Guo, Xu
    Fang, Yun
    Zhu, Xuehu
    Xu, Wangli
    Zhu, Lixing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 325 - 339
  • [28] Locally Robust Semiparametric Estimation
    Chernozhukov, Victor
    Carlos Escanciano, Juan
    Ichimura, Hidehiko
    Newey, Whitney K.
    Robins, James M.
    [J]. ECONOMETRICA, 2022, 90 (04) : 1501 - 1535
  • [29] Missing samples reconstruction using an efficient and robust instantaneous frequency estimation algorithm
    Ali, Sadiq
    Khan, Nabeel Ali
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (04) : 1284 - 1298
  • [30] Robust and efficient estimation for the treatment effect in causal inference and missing data problems
    Lin, Huazhen
    Zhou, Fanyin
    Wang, Qiuxia
    Zhou, Ling
    Qin, Jing
    [J]. JOURNAL OF ECONOMETRICS, 2018, 205 (02) : 363 - 380