DOUBLY ROBUST AND LOCALLY EFFICIENT ESTIMATION WITH MISSING OUTCOMES

被引:2
|
作者
Han, Peisong [1 ]
Wang, Lu [2 ]
Song, Peter X. -K. [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Augmented inverse probability weighting (AIPW); auxiliary variables; conditional empirical likelihood; mean regression; missing at random (MAR); surrogate outcome; SEMIPARAMETRIC REGRESSION-MODELS; LIKELIHOOD-BASED INFERENCE; EMPIRICAL-LIKELIHOOD;
D O I
10.5705/ss.2014.030
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parametric regression where the outcome is subject to missingness. To achieve the semiparametric efficiency bound, most existing estimation methods require the correct modeling of certain second moments of the data, which can be very challenging in practice. We propose an estimation procedure based on the conditional empirical likelihood (CEL) method. Our method does not require us to model any second moments. We study the CEL-based inverse probability weighted (CEL-IPW) and augmented inverse probability weighted (CEL-AIPW) estimators in detail. Under some regularity conditions and the missing at random (MAR) mechanism, the CEL-IPW estimator is consistent if the missingness mechanism is correctly modeled, and the CEL-AIPW estimator is consistent if either the missingness mechanism or the conditional mean of the outcome is correctly modeled. When both quantities are correctly modeled, the CEL-AIPW estimator attains the semiparametric efficiency bound without modeling any second moments. The asymptotic distributions are derived. Numerical implementation through nested optimization routines using the Newton-Raphson algorithm is discussed.
引用
收藏
页码:691 / 719
页数:29
相关论文
共 50 条
  • [41] Estimation and Inference Based on Neumann Series Approximation to Locally Efficient Score in Missing Data Problems
    Chen, Hua Yun
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (04) : 713 - 734
  • [42] Robust and efficient estimation for nonlinear model based on composite quantile regression with missing covariates
    Zhao, Qiang
    Zhang, Chao
    Wu, Jingjing
    Wang, Xiuli
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 8127 - 8146
  • [43] Efficient robust estimation for single-index mixed effects models with missing observations
    Liugen Xue
    Junshan Xie
    [J]. Statistical Papers, 2024, 65 : 827 - 864
  • [44] Efficient robust estimation for single-index mixed effects models with missing observations
    Xue, Liugen
    Xie, Junshan
    [J]. STATISTICAL PAPERS, 2024, 65 (02) : 827 - 864
  • [45] Approximated Doubly Robust Search Relevance Estimation
    Zou, Lixin
    Hao, Changying
    Cai, Hengyi
    Wang, Shuaiqiang
    Cheng, Suqi
    Cheng, Zhicong
    Ye, Wenwen
    Gu, Simiu
    Yin, Dawei
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3756 - 3765
  • [46] Doubly robust estimation of the generalized impact fraction
    Taguri, Masataka
    Matsuyama, Yutaka
    Ohashi, Yasuo
    Harada, Akiko
    Ueshima, Hirotsugu
    [J]. BIOSTATISTICS, 2012, 13 (03) : 455 - 467
  • [47] Semiparametric Bayesian doubly robust causal estimation
    Luo, Yu
    Graham, Daniel J.
    McCoy, Emma J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 171 - 187
  • [48] Doubly Robust Estimation of Optimal Dosing Strategies
    Schulz, Juliana
    Moodie, Erica E. M.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 256 - 268
  • [49] Bias-Reduced Doubly Robust Estimation
    Vermeulen, Karel
    Vansteelandt, Stijn
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (511) : 1024 - 1036
  • [50] Doubly robust estimation in generalized linear models
    Orsini, Nicola
    Bellocco, Rino
    Sjolander, Arvid
    [J]. STATA JOURNAL, 2013, 13 (01): : 185 - 205