Locally Robust Semiparametric Estimation

被引:35
|
作者
Chernozhukov, Victor [1 ]
Carlos Escanciano, Juan [2 ]
Ichimura, Hidehiko [3 ,4 ]
Newey, Whitney K. [1 ,5 ]
Robins, James M. [6 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02139 USA
[2] Univ Carlos III Madrid, Dept Econ, Madrid, Spain
[3] Univ Arizona, Dept Econ, Tucson, AZ 85721 USA
[4] Univ Tokyo, Dept Econ, Tokyo, Japan
[5] NBER, Cambridge, MA 02138 USA
[6] Harvard Univ, Sch Publ Hlth, Epidemiol, Cambridge, MA 02138 USA
关键词
Local robustness; orthogonal moments; double robustness; semiparametric estimation; bias; GMM; EFFICIENT ESTIMATION; ASYMPTOTIC VARIANCE; CAUSAL INFERENCE; MODELS; REGRESSION; VARIABLES; SELECTION; CONVERGENCE; BOUNDS;
D O I
10.3982/ECTA16294
中图分类号
F [经济];
学科分类号
02 ;
摘要
Many economic and causal parameters depend on nonparametric or high dimensional first steps. We give a general construction of locally robust/orthogonal moment functions for GMM, where first steps have no effect, locally, on average moment functions. Using these orthogonal moments reduces model selection and regularization bias, as is important in many applications, especially for machine learning first steps. Also, associated standard errors are robust to misspecification when there is the same number of moment functions as parameters of interest. We use these orthogonal moments and cross-fitting to construct debiased machine learning estimators of functions of high dimensional conditional quantiles and of dynamic discrete choice parameters with high dimensional state variables. We show that additional first steps needed for the orthogonal moment functions have no effect, globally, on average orthogonal moment functions. We give a general approach to estimating those additional first steps. We characterize double robustness and give a variety of new doubly robust moment functions. We give general and simple regularity conditions for asymptotic theory.
引用
收藏
页码:1501 / 1535
页数:35
相关论文
共 50 条
  • [1] Estimation of semiparametric locally stationary diffusion models
    Koo, Bonsoo
    Linton, Oliver
    [J]. JOURNAL OF ECONOMETRICS, 2012, 170 (01) : 210 - 233
  • [2] Semiparametric estimation by model selection for locally stationary processes
    Van Bellegem, Sebastien
    Dahlhaus, Rainer
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 721 - 746
  • [3] Semiparametric Bayesian doubly robust causal estimation
    Luo, Yu
    Graham, Daniel J.
    McCoy, Emma J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 171 - 187
  • [4] Locally robust Msplit estimation
    Wyszkowska, Patrycja
    Duchnowski, Robert
    [J]. JOURNAL OF APPLIED GEODESY, 2024,
  • [5] On robust estimation of effect size under semiparametric models
    Zhiyi Zhang
    Nancy Schoeps
    [J]. Psychometrika, 1997, 62 : 201 - 214
  • [6] Semiparametric segment M-estimation for locally stationary diffusions
    Deleamont, P-Y
    La Vecchia, D.
    [J]. BIOMETRIKA, 2019, 106 (04) : 941 - 956
  • [7] Semiparametric robust estimation of truncated and censored regression models
    Cizek, Pavel
    [J]. JOURNAL OF ECONOMETRICS, 2012, 168 (02) : 347 - 366
  • [8] On doubly robust estimation in a semiparametric odds ratio model
    Tchetgen, Eric J. Tchetgen
    Robins, James M.
    Rotnitzky, Andrea
    [J]. BIOMETRIKA, 2010, 97 (01) : 171 - 180
  • [9] On robust estimation of effect size under semiparametric models
    Zhang, ZY
    Schoeps, N
    [J]. PSYCHOMETRIKA, 1997, 62 (02) : 201 - 214
  • [10] ROBUST ESTIMATION FOR SEMIPARAMETRIC EXPONENTIAL MIXTURE-MODELS
    SHEN, LZQ
    [J]. STATISTICA SINICA, 1995, 5 (01) : 333 - 349