Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

被引:0
|
作者
Liu, Wan-Hai [1 ,2 ]
Wang, Xiang [2 ]
Jiang, Hong-Bin [1 ]
Ma, Wen-Fang [1 ]
机构
[1] Mianyang Normal Univ, Res Ctr Computat Phys, Mianyang 621000, Peoples R China
[2] Lanzhou City Univ, Sch Bailie Engn & Technol, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Richtmyer-Meshkov instability; nonlinear saturation amplitude; perturbation expansion; RAYLEIGH-TAYLOR INSTABILITY;
D O I
10.1088/0253-6102/65/4/523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 50 条
  • [41] Richtmyer-Meshkov Instability of Laminar Flame
    Tyaktev, A. A.
    Pavlenko, A., V
    Anikin, N. B.
    Bugaenko, I. L.
    Piskunov, Yu A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2020, 61 (02) : 157 - 161
  • [42] Scaling the incompressible Richtmyer-Meshkov instability
    Cotrell, David L.
    Cook, Andrew W.
    PHYSICS OF FLUIDS, 2007, 19 (07)
  • [43] Theory of the Ablative Richtmyer-Meshkov Instability
    Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, United States
    Phys Rev Lett, 10 (2091-2094):
  • [44] Perturbation evolution started by Richtmyer-Meshkov instability in planar laser targets
    Aglitskiy, Y.
    Metzler, N.
    Karasik, M.
    Serlin, V.
    Velikovich, A. L.
    Obenschain, S. P.
    Mostovych, A. N.
    Schmitt, A. J.
    Weaver, J.
    Gardner, J. H.
    Walsh, T.
    PHYSICS OF PLASMAS, 2006, 13 (08)
  • [45] Ejecta source model based on the nonlinear Richtmyer-Meshkov instability
    Dimonte, G., 1600, American Institute of Physics Inc. (113):
  • [46] Energy transfer in the Richtmyer-Meshkov instability
    Thornber, Ben
    Zhou, Ye
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [47] Richtmyer-Meshkov Instability of Laminar Flame
    A. A. Tyaktev
    A. V. Pavlenko
    N. B. Anikin
    I. L. Bugaenko
    Yu. A. Piskunov
    Journal of Applied Mechanics and Technical Physics, 2020, 61 : 157 - 161
  • [48] On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface
    Tritschler, V. K.
    Olson, B. J.
    Lele, S. K.
    Hickel, S.
    Hu, X. Y.
    Adams, N. A.
    JOURNAL OF FLUID MECHANICS, 2014, 755 : 429 - 462
  • [49] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun
    State Key Laboratory of Scientific and Engineering Computing
    Science China Mathematics, 2004, (S1) : 234 - 244
  • [50] Impulsive model for the Richtmyer-Meshkov instability
    Vandenboomgaerde, M
    Mugler, C
    Gauthier, S
    PHYSICAL REVIEW E, 1998, 58 (02): : 1874 - 1882