Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

被引:0
|
作者
Liu, Wan-Hai [1 ,2 ]
Wang, Xiang [2 ]
Jiang, Hong-Bin [1 ]
Ma, Wen-Fang [1 ]
机构
[1] Mianyang Normal Univ, Res Ctr Computat Phys, Mianyang 621000, Peoples R China
[2] Lanzhou City Univ, Sch Bailie Engn & Technol, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Richtmyer-Meshkov instability; nonlinear saturation amplitude; perturbation expansion; RAYLEIGH-TAYLOR INSTABILITY;
D O I
10.1088/0253-6102/65/4/523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 50 条
  • [21] The Richtmyer-Meshkov instability in magnetohydrodynamics
    Wheatley, V.
    Samtaney, R.
    Pullin, D. I.
    PHYSICS OF FLUIDS, 2009, 21 (08)
  • [22] Experiments of the Richtmyer-Meshkov instability
    Prestridge, Katherine
    Orlicz, Gregory
    Balasubramanian, Sridhar
    Balakumar, B. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (2003):
  • [23] Richtmyer-Meshkov instability: theory of linear and nonlinear evolution
    Nishihara, K.
    Wouchuk, J. G.
    Matsuoka, C.
    Ishizaki, R.
    Zhakhovsky, V. V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1916): : 1769 - 1807
  • [24] Atomistic dynamics of the Richtmyer-Meshkov instability in cylindrical and planar geometries
    Zhakhovskii, V. V.
    Zybin, S. V.
    Abarzhi, S. I.
    Nishihara, K.
    Shock Compression of Condensed Matter - 2005, Pts 1 and 2, 2006, 845 : 433 - 436
  • [25] On the problem of the Richtmyer-Meshkov instability suppression
    Aleshin, AN
    Lazareva, EV
    Sergeev, SV
    Zaitsev, SG
    DOKLADY AKADEMII NAUK, 1998, 363 (02) : 178 - 180
  • [26] RICHTMYER-MESHKOV INSTABILITY IN THE TURBULENT REGIME
    DIMONTE, G
    FRERKING, CE
    SCHNEIDER, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (24) : 4855 - 4858
  • [27] Richtmyer-Meshkov instability of arbitrary shapes
    Mikaelian, KO
    PHYSICS OF FLUIDS, 2005, 17 (03) : 034101 - 1
  • [28] QUANTITATIVE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    GROVE, JW
    HOLMES, R
    SHARP, DH
    YANG, Y
    ZHANG, Q
    PHYSICAL REVIEW LETTERS, 1993, 71 (21) : 3473 - 3476
  • [29] Investigation of the initial perturbation amplitude for the inclined interface Richtmyer-Meshkov instability
    McFarland, J. A.
    Greenough, J. A.
    Ranjan, D.
    PHYSICA SCRIPTA, 2013, T155
  • [30] Ejecta source model based on the nonlinear Richtmyer-Meshkov instability
    Dimonte, Guy
    Terrones, Guillermo
    Cherne, F. J.
    Ramaprabhu, P.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (02)