Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

被引:0
|
作者
Liu, Wan-Hai [1 ,2 ]
Wang, Xiang [2 ]
Jiang, Hong-Bin [1 ]
Ma, Wen-Fang [1 ]
机构
[1] Mianyang Normal Univ, Res Ctr Computat Phys, Mianyang 621000, Peoples R China
[2] Lanzhou City Univ, Sch Bailie Engn & Technol, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Richtmyer-Meshkov instability; nonlinear saturation amplitude; perturbation expansion; RAYLEIGH-TAYLOR INSTABILITY;
D O I
10.1088/0253-6102/65/4/523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 50 条
  • [1] Nonlinear Saturation Amplitude in Classical Planar Richtmyer–Meshkov Instability
    刘万海
    王翔
    蒋宏彬
    马文芳
    CommunicationsinTheoreticalPhysics, 2016, 65 (04) : 523 - 526
  • [2] Nonlinear evolution of the Richtmyer-Meshkov instability
    Herrmann, Marcus
    Moin, Parviz
    Abarzhi, Snezhana I.
    JOURNAL OF FLUID MECHANICS, 2008, 612 (311-338) : 311 - 338
  • [3] SMALL AMPLITUDE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    YANG, YM
    ZHANG, QA
    SHARP, DH
    PHYSICS OF FLUIDS, 1994, 6 (05) : 1856 - 1873
  • [4] Richtmyer-Meshkov Instability in Nonlinear Optics
    Jia, Shu
    Huntley, Laura I.
    Fleischer, Jason W.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [5] The Richtmyer-Meshkov instability
    Brouillette, M
    ANNUAL REVIEW OF FLUID MECHANICS, 2002, 34 : 445 - 468
  • [6] Nonlinear behaviour of convergent Richtmyer-Meshkov instability
    Luo, Xisheng
    Li, Ming
    Ding, Juchun
    Zhai, Zhigang
    Si, Ting
    JOURNAL OF FLUID MECHANICS, 2019, 877 : 130 - 141
  • [7] An analytical nonlinear theory of Richtmyer-Meshkov instability
    Zhang, Qiang
    Sohn, Sung-Ik
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 212 (03): : 149 - 155
  • [8] Postponement of saturation of the Richtmyer-Meshkov instability in a convergent geometry
    Fincke, JR
    Lanier, NE
    Batha, SH
    Hueckstaedt, RM
    Magelssen, GR
    Rothman, SD
    Parker, KW
    Horsfield, CJ
    PHYSICAL REVIEW LETTERS, 2004, 93 (11) : 115003 - 1
  • [9] An analytical nonlinear theory of Richtmyer-Meshkov instability
    Phys Lett Sect A Gen At Solid State Phys, 3 (149):
  • [10] Viscous nonlinear theory of Richtmyer-Meshkov instability
    Carlès, P
    Popinet, S
    PHYSICS OF FLUIDS, 2001, 13 (07) : 1833 - 1836