Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

被引:0
|
作者
Liu, Wan-Hai [1 ,2 ]
Wang, Xiang [2 ]
Jiang, Hong-Bin [1 ]
Ma, Wen-Fang [1 ]
机构
[1] Mianyang Normal Univ, Res Ctr Computat Phys, Mianyang 621000, Peoples R China
[2] Lanzhou City Univ, Sch Bailie Engn & Technol, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Richtmyer-Meshkov instability; nonlinear saturation amplitude; perturbation expansion; RAYLEIGH-TAYLOR INSTABILITY;
D O I
10.1088/0253-6102/65/4/523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 50 条
  • [31] Planar Richtmyer-Meshkov Instabilities and Transition
    Gowardhan, Akshay A.
    Grinstein, Fernando F.
    Ristorcelli, J. Raymond
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): INSTABILITY, TRANSITION, GRID TURBULENCE AND JETS, 2011, 318
  • [32] Small amplitude theory of Richtmyer-Meshkov instability in cylindrical and spherical geometries
    Kim, JH
    ACTA APPLICANDAE MATHEMATICAE, 2004, 82 (02) : 119 - 143
  • [33] Richtmyer-Meshkov instability with a rippled reshock
    Zhang, Yumeng
    Zhao, Yong
    Ding, Juchun
    Luo, Xisheng
    JOURNAL OF FLUID MECHANICS, 2023, 968
  • [34] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244
  • [35] A STUDY OF LINEAR, NONLINEAR AND TRANSITION STAGES OF RICHTMYER-MESHKOV INSTABILITY
    ALESHIN, AN
    LAZAREVA, EV
    ZAITSEV, SG
    ROZANOV, VB
    GAMALII, EG
    LEBO, IG
    DOKLADY AKADEMII NAUK SSSR, 1990, 310 (05): : 1105 - 1108
  • [36] STUDY OF NONLINEAR AND TRANSITION STAGES OF THE DEVELOPMENT OF THE RICHTMYER-MESHKOV INSTABILITY
    ALESHIN, AN
    GAMALII, EG
    ZAITSEV, SG
    LAZAREVA, EV
    LEBO, IG
    ROZANOV, VB
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1988, 14 (12): : 1063 - 1067
  • [37] Theory of the ablative Richtmyer-Meshkov instability
    Goncharov, VN
    PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2091 - 2094
  • [38] Startup process in the Richtmyer-Meshkov instability
    Lombardini, M.
    Pullin, D. I.
    PHYSICS OF FLUIDS, 2009, 21 (04)
  • [39] Richtmyer-Meshkov instability and the dynamics of the magnetosphere
    Wu, CC
    Roberts, PH
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (06) : 655 - 658
  • [40] Relativistic effects on the Richtmyer-Meshkov instability
    Mohseni, F.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW D, 2014, 90 (12):