Numerical methods for the Einstein equations in null quasi-spherical coordinates

被引:18
|
作者
Bartnik, R [1 ]
Norton, AH [1 ]
机构
[1] Univ Canberra, Sch Math & Stat, Canberra, ACT 2601, Australia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2000年 / 22卷 / 03期
关键词
black hole; convolution spline; Einstein equations; preconditioned elliptic system; spherical harmonics;
D O I
10.1137/S1064827599356171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algorithms used in our construction of a fourth-order in time evolution for the full Einstein equations and assess the accuracy of some representative solutions. The scheme employs several novel geometric and numerical techniques, including a geometrically invariant coordinate gauge, which leads to a characteristic-transport formulation of the underlying hyperbolic system, combined with a method of lines evolution; convolution splines for radial interpolation, regridding, differentiation, and noise suppression; representations using spin-weighted spherical harmonics; and a spectral preconditioner for solving a class of first-order elliptic systems on S-2. Initial data for the evolution is unconstrained, subject only to a mild size condition. For sample initial data of intermediate strength (19% of the total mass in gravitational energy), the code is accurate to 1 part in 10(5), until null time z = 55m when the coordinate condition breaks down.
引用
收藏
页码:917 / 950
页数:34
相关论文
共 50 条
  • [1] Numerical relativity in spherical coordinates with the Einstein Toolkit
    Mewes, Vassilios
    Zlochower, Yosef
    Campanelli, Manuela
    Ruchlin, Ian
    Etienne, Zachariah B.
    Baumgarte, Thomas W.
    PHYSICAL REVIEW D, 2018, 97 (08)
  • [2] Are Nanoparticles Spherical or Quasi-Spherical?
    Sokolov, Stanislav V.
    Batchelor-McAuley, Christopher
    Tschulik, Kristina
    Fletcher, Stephen
    Compton, Richard G.
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (30) : 10741 - 10746
  • [3] Shear-free null quasi-spherical space-times
    Bartnik, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (11) : 5774 - 5791
  • [4] Quasi-spherical superclusters
    Heinamaki, P.
    Teerikorpi, P.
    Douspis, M.
    Nurmi, P.
    Einasto, M.
    Gramann, M.
    Nevalainen, J.
    Saar, E.
    ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [5] Masses at null infinity for Einstein's equations in harmonic coordinates
    He, Lili
    Lindblad, Hans
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (04) : 1541 - 1600
  • [6] VACUUM SOLUTIONS OF EINSTEIN EQUATIONS IN DOUBLE-NULL COORDINATES
    CURRY, C
    LAKE, K
    CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (01) : 237 - 243
  • [7] EINSTEIN-MAXWELL FIELDS IN ASYMPTOTICALLY NULL-SPHERICAL COORDINATES
    PERSIDES, S
    IOANNIDES, I
    PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (03): : 829 - 841
  • [8] Quasi-Spherical and Multi-Quasi-Spherical Polynomial Quaternionic Equations: Introduction of the Notions and Some Examples
    Mierzejewski, Dmytro
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (02) : 407 - 416
  • [9] Quasi-Spherical and Multi-Quasi-Spherical Polynomial Quaternionic Equations: Introduction of the Notions and Some Examples
    Dmytro Mierzejewski
    Advances in Applied Clifford Algebras, 2011, 21 : 407 - 416
  • [10] Fermion quasi-spherical harmonics
    Hunter, G
    Ecimovic, P
    Schlifer, I
    Walker, IM
    Beamish, D
    Donev, S
    Kowalski, M
    Arslan, S
    Heck, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 795 - 803