Numerical methods for the Einstein equations in null quasi-spherical coordinates

被引:18
|
作者
Bartnik, R [1 ]
Norton, AH [1 ]
机构
[1] Univ Canberra, Sch Math & Stat, Canberra, ACT 2601, Australia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2000年 / 22卷 / 03期
关键词
black hole; convolution spline; Einstein equations; preconditioned elliptic system; spherical harmonics;
D O I
10.1137/S1064827599356171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algorithms used in our construction of a fourth-order in time evolution for the full Einstein equations and assess the accuracy of some representative solutions. The scheme employs several novel geometric and numerical techniques, including a geometrically invariant coordinate gauge, which leads to a characteristic-transport formulation of the underlying hyperbolic system, combined with a method of lines evolution; convolution splines for radial interpolation, regridding, differentiation, and noise suppression; representations using spin-weighted spherical harmonics; and a spectral preconditioner for solving a class of first-order elliptic systems on S-2. Initial data for the evolution is unconstrained, subject only to a mild size condition. For sample initial data of intermediate strength (19% of the total mass in gravitational energy), the code is accurate to 1 part in 10(5), until null time z = 55m when the coordinate condition breaks down.
引用
收藏
页码:917 / 950
页数:34
相关论文
共 50 条
  • [41] Light scattering by quasi-spherical ice crystals
    Nousiainen, T
    McFarquhar, GM
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2004, 61 (18) : 2229 - 2248
  • [42] On the surface tension of fluctuating quasi-spherical vesicles
    Barbetta, C.
    Imparato, A.
    Fournier, J. -B.
    EUROPEAN PHYSICAL JOURNAL E, 2010, 31 (03): : 333 - 342
  • [43] A model for quasi-spherical magnetized accretion flow
    Shadmehri, M. (mshadmehri@science1.um.ac.ir), 1600, EDP Sciences (424):
  • [44] The sintering behavior of quasi-spherical tungsten nanopowders
    Li, Baoqiang
    Sun, Zhiqiang
    Hou, Guolin
    Ding, Fei
    Hu, Peng
    Yuan, Fangli
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2016, 56 : 44 - 50
  • [45] Slowly rotating Kerr metric derived from the Einstein equations in affine-null coordinates
    Madler, Thomas
    Gallo, Emanuel
    PHYSICAL REVIEW D, 2023, 107 (10)
  • [46] Numerical Study of Quasi-Spherical Wire-Array Implosions on the QiangGuang-I Facility
    Zhang, Yang
    Ding, Ning
    Li, Zheng-Hong
    Xu, Rong-Kun
    Sun, Shun-Kai
    Chen, Ding-Yang
    Xue, Chuang
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (12) : 3360 - 3366
  • [47] Numerical Model of Surface and Quasi-Spherical Sea Noise and Its Application to Analysis of DIFAR Systems
    Rudnicki, Mariusz
    Salamon, Roman
    Marszal, Jacek
    ARCHIVES OF ACOUSTICS, 2021, 46 (04) : 591 - 604
  • [48] Comparison of quasi-spherical surfaces - application to corneal biometry
    Polette, Arnaud
    Mari, Jean-Luc
    Brunette, Isabelle
    Meunier, Jean
    IET BIOMETRICS, 2016, 5 (03) : 212 - 219
  • [50] Dynamics of shape fluctuations of quasi-spherical vesicles revisited
    Miao, L
    Lomholt, MA
    Kleis, J
    EUROPEAN PHYSICAL JOURNAL E, 2002, 9 (02): : 143 - 160